期刊文献+

基于HS-BP算法的尾矿库安全评价 被引量:33

Safety evaluation of mine tailings facilities based on HS-BP algorithm
原文传递
导出
摘要 为有效预防尾矿库事故的发生,针对尾矿库事故率具有随机波动性和非线性的特点,采用和声搜索算法(HSA)和BP神经网络建立尾矿库安全评价模型.该方法利用HS算法对BP神经网络权值进行优化,进而对尾矿库进行安全评价.通过对辽宁本溪南芬尾矿库安全现状进行拟合预测,结果表明:将HS算法和BP神经网络有机结合,能够克服传统BP网络易陷入极小值、收敛速度慢得缺陷,有效的刻画了尾矿库事故的随机波动特性,并且预测能力均优于其他评价算法,具有重要意义. For the purpose of preventing mine railings accident effectively, aimed at the characteristics of stochastic fluctuation and nonlinear, a prediction model for mine railings accident rate is established by adopting harmony search algorithm and BP neural network. The method introduced harmony search algorithm to optimize the weight of BP neural network, and evaluate the safety of mine tailings. The applied prediction on mine tailings accident of Liaoning province Benxi Nanfen mine tailing shows that combining HS and BP can overcome flaws of easily getting into minimum and slow convergence, effectively describe the stochastic fluctuation of mine tailings accident, and capability and robustness are better than the other algorithms.
出处 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2012年第11期2585-2590,共6页 Systems Engineering-Theory & Practice
基金 "十一五"国家科技支撑计划重大项目(2006BAK04A21) 中国煤炭工业科技计划项目基金(MTKJ2009-285) 辽宁省教育厅科学技术研究基金(2004F050)
关键词 尾矿库 和声搜索算法 BP神经网络 权值优化 安全评价 mine tailings facilities harmony search algorithm BP neural network optimize the weight safety evaluation
  • 相关文献

参考文献14

二级参考文献32

共引文献273

同被引文献353

引证文献33

二级引证文献285

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部