期刊文献+

时域和酉空间中基于最大相关熵准则的非线性噪声处理 被引量:2

Max correntropy criteria-based nonlinear noise processing in time domain and unitary space
下载PDF
导出
摘要 针对非线性噪声处理的问题,考虑到信号的高阶统计量以及在酉空间可以很好地处理非高斯噪声,提出了在时域和酉空间中基于最大相关熵准则(MCC)的噪声处理算法。结合MCC和梯度下降算法,设计出了时域中非线性噪声的滤波算法。同时将该算法推广到酉空间中噪声处理,给出了酉空间中基于MCC的滤波算法。通过仿真研究发现,在时域和酉空间中,基于MCC的滤波算法相对于传统的基于最小均方差(LMS)的滤波算法在处理非高斯噪声的问题时有着显著优势,以更快的收敛速度达到能够较完整地保留信号特征的效果。 Considering the problems for nonlinear-noise processing and taking account of that higher-order statistics of the signal and unitary space can be a good deal with non-Gaussian noise,the noise processing algorithm based on Max Correntropy Criteria(MCC) in the time domain and the unitary space was proposed.Combining the MCC and gradient descent algorithm,a nonlinear-noise filtering algorithm in the time domain was designed.At the same time,extending the algorithm to the noise processing in the unitary space,the unitary space filtering algorithm based on the MCC was put forward.The simulation study shows that the algorithm based on the MCC algorithm has significant advantages compared with the traditional Least Mean Square(LMS) based filtering algorithm,which means it can achieve more complete signal characteristics by faster convergence.
出处 《计算机应用》 CSCD 北大核心 2012年第12期3287-3290,共4页 journal of Computer Applications
基金 国家无线重大专项(2010ZX03004-001 2010ZX03004-002 2011ZX03002-001) 国家自然科学基金资助项目(61071126)
关键词 自适应滤波器 酉空间 最大相关熵准则 最小均方差算法 非线性噪声 adaptive filter unitary space Max Correntropy Criteria(MCC) Least Mean Square(LMS) algorithm nonlinear noise
  • 相关文献

参考文献16

  • 1刘明园,徐松涛,刘凯,甘元.改进的变步长LMS自适应滤波算法分析[J].火力与指挥控制,2010,35(12):110-112. 被引量:4
  • 2SHI KUN, MA XIAOLI. Transform domain LMS algorithms for sparse system identification[ C]// 2010 IEEE International Confer- ence on Acoustics Speech and Signal Processing. New York: IEEE, 2010:3714 - 3717.
  • 3GORRIZ J M, RAMREZ J, ALVAREZ S C, et al. Novel LMS al- gorithm applied to adaptive noise cancellation[ J]. IEEE Signal Pro- cessing Letters, 2009, 16(1) : 34 - 37.
  • 4杨南海,黄明明,赫然,王秀坤.基于最大相关熵准则的鲁棒半监督学习算法[J].软件学报,2012,23(2):279-288. 被引量:8
  • 5SINGH A, PRINCIPE ] C. Using correntropy as a cost function in adaptive filters[ J]. International Joint Conference on Neural Net- works. Piscataway: IEEE, 2009:2950-2955.
  • 6ZHAO SONGLIN, PRINCIPE J C. A nonparametric information the- oretic approach for change detection in time series[ C[// The 2011 International Joint Conference on Neural Networks. Piscataway: IEEE, 2011:1281 - 1284.
  • 7CHOUZENOUX E, MOUSSAOUI S, IDIER J, et al. Optimization of a maximum entropy criterion for 2D nuclear magnetic resonance reconstruction[ C]//2010 IEEE International Conference on Acous- tics Speech and Signal Processing. Piscataway: IEEE, 2010:4154 - 4157.
  • 8张杰,廖桂生,王珏.空间相关色噪声下基于酉变换的信号源数目估计[J].电子学报,2005,33(9):1581-1585. 被引量:12
  • 9CHEN YILUN, GU YUANTAO, HERO A O. Sparse LMS for sys- tem identification[ C]//Proceedings of the 2009 IEEE International Conference on Acoustics, Speech and Signal Processing. Washing- ton, DC: IEEE Computer Society, 2009:3125-3128.
  • 10TING L K, COWAN C F N, WOODS R F. LMS coefficient filte- ring for time-varying chirped signals[ J]. IEEE Transactions on Sig- nal Processing, 2004, 52(11) : 3160 -3169.

二级参考文献49

共引文献50

同被引文献27

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部