期刊文献+

基于线段特征匹配的EKF-SLAM算法 被引量:10

EKF-SLAM Algorithm Based on Line Segment Matching
原文传递
导出
摘要 针对EKF-SLAM算法在机器人被"绑架"时失效的问题,提出一种新的基于线段特征匹配的EKF-SLAM算法——EKFLineSLAM算法。该算法在线段特征观测模型和改进的基于逐点搜索的线段提取算法的基础上,将线段特征匹配引入EKF-SLAM算法,并对线段长度和姿态角进行EKF更新,创建环境的线段特征地图。在未知室内结构化环境中,将该算法与弱匹配EKFLineSLAM算法进行比较,验证了EKFLineSLAM算法在结构化环境中克服机器人"绑架"问题的可行性和有效性。 For the problem of EKF-SLAM algorithm being invalid when robot is kidnapped, a new EKF-SLAM algorithm called "EKF- LineSLAM Algorithm" based on line segment matching is presented. This algorithm is based on the line segment observation model, and the improved line segment extraction algorithm based on point by point search. It introduces the line segment match in the EKF- SLAM algorithm, and renews the line segment's length and posture angle by EKF to find the line segment characteristic map. Finally, the presented algorithm and the weak matching EKFLineSLAM algorithm are compared in an unknown structured indoor environment. The comparison results confirm the feasibility and the effectiveness of the EKFLineSLAM algorithm for the kidnapped robot problem in structured environments.
出处 《控制工程》 CSCD 北大核心 2012年第6期1019-1024,1028,共7页 Control Engineering of China
关键词 EKF-SLAM EKFLineSLAM 线段特征观测模型 线段提取 线段匹配 EKF-SLAM EKFLineSLAM line segment observation model line segment extraction line segment matching
  • 相关文献

参考文献7

  • 1Durrant-Whyte H, Bailey T. Simultaneous Localization and Mapping (SLAM) : Part I [ J ]. IEEE Robotics and Automation Magazine, 2006,13(2) :99-110.
  • 2Durrant-Whyte H, Rye D, Nebot E. Localization of autonomous guided vehicles[ M ]. New York : Spfinger-Verlag, 1995:613-625.
  • 3陈杨钟,刘士荣,俞金寿.基于非线性滤波的移动机器人位姿估计[J].华东理工大学学报(自然科学版),2007,33(4):558-563. 被引量:1
  • 4Smith R C,Self M,Cheeseman P. Estimating uncertain spatial rela-tionships in robotics [ M ]. New York, Springer-Verlag, 1990.
  • 5Guivant J E,Nebot E M. Optimization of the simultaneous localiza-tion and map-building algorithm for real-time implementation[ J].IEEE Trans on Robotics and Automation,2001,17(3) :242-257.
  • 6Guivant J,Nebot E. Compressed filter for realtime implementationof simultaneous localization and map building [ C ]. Int Conf onField and Service Robots. 2001 :309-314.
  • 7Siadat A,Kaske A,Klausmann S,et al. An optimized segmentationmethod for a 2d laserscanner applied to mobile robot navigation[C].3rd IFAC Symp on Intelligent Components and Instrumentsfor Control Applications. 1997 : 153-158.

二级参考文献12

  • 1胡洪涛,敬忠良,李安平,胡士强.非高斯条件下基于粒子滤波的目标跟踪[J].上海交通大学学报,2004,38(12):1996-1999. 被引量:54
  • 2莫以为,萧德云.进化粒子滤波算法及其应用[J].控制理论与应用,2005,22(2):269-272. 被引量:41
  • 3胡士强,敬忠良.粒子滤波算法综述[J].控制与决策,2005,20(4):361-365. 被引量:293
  • 4厉茂海,洪炳熔.移动机器人的概率定位方法研究进展[J].机器人,2005,27(4):380-384. 被引量:15
  • 5Mourllion B,Gruyer D.Kalman filters predictive steps comparison for vehicle localization[A].International Conference on Intelligent Robots and Systems[C].Edmonton,Alberta,Canada:IEEE press,2005.565-571.
  • 6Smith R,Self M,Cheeseman P.Estimating uncertain spatial relationships in robotics[J].Autonomous Robot Vehicles,1990,5(4):167-193.
  • 7Dellaert F,Fox D.Monte Carlo localization for mobile robots[A].IEEE International Conference on Robotics & Automation[C].Detroit,Michigan:IEEE press,1999.1322-1329.
  • 8Ueda R,Fukase T,Kobayashi Y.Uniform Monte Carlo localization:Fast and robust self-localization method for mobile robots[A].IEEE Intemational Conference on Robotics & Automation[C].Washington,DC:IEEE press,2002.1353-1359.
  • 9Armesto L,Tomero J.SLAM based on Kalman filter for multi-rate fusion of laser and encoder measurements[A].International Conference on Intelligent Robots and Systems[C].Sendai,Japan:IEEE press,2004.1960-1865.
  • 10Blom H A P,Bloem E A.Particle filtering for stochastic hybrid systems[A].2004 IEEE/RSJ International Conference on Decision and Control[C].Atlantis,Paradise Island:IEEE press,2004.3221-3228.

同被引文献72

  • 1曾波,江资斌.GPS车载导航系统的地图匹配算法[J].测绘工程,2004,13(3):65-67. 被引量:11
  • 2曹跃云,王广君,柳健.基于神经网络的地形匹配方法研究[J].海军工程大学学报,2006,18(1):51-56. 被引量:3
  • 3杨易,谷正气,胡林,容哲,罗国清.基于概率决策的车辆导航系统地图匹配算法[J].汽车工程,2006,28(10):897-901. 被引量:4
  • 4Durrant-Whyte H,Bailey T.Simultaneous Localization and Mapping:Part I[J].IEEE Robotics and Automation Magazine,2006,13(2):99-108.
  • 5Dissanayake M W M G,Newman P,Clark S,et al.A Solution to the Simultaneous Localization and Mapbuilding(SLAM)Problem[J].Transactions of Robotics and Automation,2001,17(3):229-241.
  • 6Singh S.Noise Impact on Time-series Forecasting Using an Intelligent Pattern Matching Technique[J].Pattern Recognition,1999,32(8):1389-1398.
  • 7Andrade-Cetto J,Vidal-Calleja T,Sanfeliu A.Unscented Transfor mation of Vehicle States in Slam[C] //Proceedings of IEEE International Conference on Robotics and Automation.Barcelona,Spain:[s.n.] ,2005:324-329.
  • 8Juliter S J.The Spherical Simplex Unscented Transformation[C] //Proceedings of American Control Conference.Denver,USA:[s.n.] ,2003:2430-2434.
  • 9Wan E A,vander Merwe R.The Unscented Kalman Filter,in Kalman Filtering and Neural Networks[EB/OL].(2004-03-10).http://www.cse.ogi.edu/PacSoft/projects/sec/wan01b.ps.
  • 10Wang X,Zhang H.A UPF-UKF Framework for SLAM[C] //Proceedings of IEEE International Conference on Robotics and Automation.Piscataway,USA:IEEE,2007:1664-1669.

引证文献10

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部