期刊文献+

空心锥撞击杆对分离式霍普金森压杆入射脉冲弥散的抑制效果分析 被引量:4

Restrain Effect of Hollow Cone Striker Bar on Incident Pulse Dispersion of Split Hopkinson Pressure Bar
下载PDF
导出
摘要 为了抑制入射脉冲弥散效应,采用动力有限元软件分析了常规分离式霍普金森压杆(SHPB)入射脉冲几何弥散的空间变化规律,发现入射杆中沿着应力波传播方向,几何弥散效应趋于增强;横截面上沿径向向外弥散效应趋于减弱。为此,在撞击杆的碰撞端部挖去一个共轴圆锥,称改造后的撞击杆为空心锥撞击杆。进而分析了空心锥撞击杆获得入射脉冲几何弥散的空间变化规律,结果表明:入射脉冲初始振荡得到有效抑制,且加载上升时间变长,空心锥的底面半径越大、锥角越小对弥散效应抑制效果越好;研究还发现采用空心锥撞击杆时,碰撞端面的摩擦效应对入射脉冲几何弥散影响不大,只是改变了振荡波的相位。最后,采用实验方法对该种改造方法的效果进行了验证,实验结果与理论和数值分析结果吻合较好。 In order to reduce the dispersion of incident pluse, the geometric dispersion of incident pulse of conventional split Hopkinson pressure bar(SHPB) were analyzed with dynamic finite element software. It was found that the geometric disperse became intensive along the direction of stress wave propagation, and weakened from center to outside surface. Then, a hollow cone was made coaxially in the end of solid cylindrical impact bar, and the modified bar was called as the hollow cone impact bar. Its effect on the incident pulse dispersion was studied numerically. The results show that the rise-time of incident pulse becomes large, and the geometric dispersion reduces more obviously with the larger cone radius and the smaller cone angle; the frictional effect between the impact bar and incident bar may be negligible, but the phase of oscillation is changed. The effect of modified bar was proved experimentally. The experiment results agree with the theoretical analysis and numerical simulation better.
出处 《兵工学报》 EI CAS CSCD 北大核心 2012年第11期1346-1351,共6页 Acta Armamentarii
基金 高等学校博士学科点专项基金(20092304110003) 中央高校基本科研业务费专项资金项目(HEUCFZ1128 HEUCF100211)
关键词 固体力学 分离式霍普金森压杆 几何弥散效应 空心锥撞击杆 入射脉冲 波形整形 solid mechanics split Hopkinson pressure bar geometric dispersion effect hollow-conestriker bar incident pulse waveform shaping
  • 相关文献

参考文献14

  • 1Meyers M A. Dynamic behavior of materials [ M ]. New York: John Wiley & Sons Inc, 1994:25 -26, 305 -310.
  • 2Davis R M. A critical study of the Hopkinson pressure bar [ J]. Philosophical Transactions, 1948, A240 : 375 -457.
  • 3Graff K F. Wave motion in elastic solids[ M]. New York: Dover Publication, 1973 : 116 - 151.
  • 4Gray III G T. Classic split-Hopkinson pressure bar testing[ C ]// Mechanical testing and evaluation. Ohio: ASM International, 2000 : 1027 - 1068.
  • 5刘孝敏,胡时胜.大直径SHPB弥散效应的二维数值分析[J].实验力学,2000,15(4):371-376. 被引量:38
  • 6王礼立,王永刚.应力波在用SHPB研究材料动态本构特性中的重要作用[J].爆炸与冲击,2005,25(1):17-25. 被引量:58
  • 7Follansbee P S, Frantz C. Wave propagation in the split Hopkin- son pressure bar[ J]. Transactions of the ASME, Journal of Engi- neering Materials and Technology, 1983, 105:61 -66.
  • 8Gorham D A. A numerical method for the correction of dispersion in pressure bar signals [ J ]. Journal of Physics E : Scientific In- strumentation, 1983, 16 : 477 - 479.
  • 9Gong J C, Malvern L E, Jenkins D A. Dispersion investigation in the split Hopkinson pressure bar[ J]. Journal of Engineering Ma- terials and Technology, 1990, 112:309 -314.
  • 10Ellwood S, Griffiths L J, Parry D J. Materials testing at high con- stant strain rates[ J]. Journal of Physics E: Scientific Instrumen- tation, 1982, 15:280-282.

二级参考文献12

  • 1胡时胜,刘剑飞,冯建平.硬质聚氨酯泡沫塑料动态力学性能的研究[J].爆炸与冲击,1996,16(4):373-376. 被引量:17
  • 2Tang T,J Eng Mech,1992年,118卷,1期,108页
  • 3Kobayashi A, Wang L L. Quest for Dynamic Deformation and Fracture of Viscoelastic Solids[M]. Japan: Ryoin Pub, 2001.
  • 4Nemat-Nasser S, Isaacs J B, Starrett J E. Hopkinson techniques for dynamic recovery experiments[J]. Proceedings of the Royal Society of London, Series A. 1991,435 : 371- 391.
  • 5Chen W, Lu F , Frew D j, et al. Dynamic compression testing of soft materials[J]. ASME Joural of Applied Mechanics, 2002,69: 214- 223.
  • 6Kolsky H. An investigation of the mechanical properties of materials at very high rates of loading[J]. Proceedings of Physics Society, 1949, B62:676.
  • 7Kolsky H. Stress Waves in Solids[M]. Oxford: Clarendous Press, 1953.
  • 8Ravichandran G, Subhash G. Critical appraisal of limiting strain rates for compression testing of ceramics in a split Hopkinson pressure bar[J]. Journal of the American Ceramic Society, 1994,77: 263-267.
  • 9Yang L M, Shim P V W. An analysis of stress uniformity in split Hopkinson bar test specimens[J]. International Journal of Impact Engineering, 2005,31 (2) : 129- 150.
  • 10Wang L L, Labibes K, Azari Z, et al. Generalization of split Hopkinson bar technique to use viscoelastic bars[J].International journal of Impact Engineering, 1994,15 (5) : 669- 686.

共引文献94

同被引文献42

  • 1汪洋,李玉龙,刘传雄.利用SHPB测定高应变率下冰的动态力学行为[J].爆炸与冲击,2011,31(2):215-219. 被引量:14
  • 2赵习金,卢芳云,王悟,李英华,林玉亮.入射波整形技术的实验和理论研究[J].高压物理学报,2004,18(3):231-236. 被引量:33
  • 3O.S.Lee,S.H.Kim,Y.H.Han.Thickness Effect of Pulse Shaper on Dynamic Stress Equilibrium and Dynamic Deformation Behavior in the Polycarbonate Using SHPB Technique[J].实验力学,2006,21(1):51-60. 被引量:21
  • 4李夕兵 刘得顺 古得生.消除岩石动态实验曲线振荡的有效途径.中南工业大学学报,1995,(26):457-460.
  • 5WANG Lili. Foundation of stress waves [ M]. 2nd ed. Bei- jing: National Defence Industry Press, 2005: 7-9.
  • 6DAVIES R M. Stress waves in solids [ J]. British journal of applied physics, 1956, 7(6) : 203-209.
  • 7BAKER W E, DOVE R C. Measurement of internal strains in a bar subjected to longitudinal impact [ J ]. Experimental mechanics, 1962, 2(10) : 307-311.
  • 8BERTHOLF L D, KARNES C H. Axisymmetric elastic-plas- tic wave propagation in 6061-T6 Aluminum bars of finite length[ J ]. Journal of applied mechanics, 1969, 36 ( 3 ) : 533-541.
  • 9HABBERSTAD J L, HOGE K G, FOSTER J E. An experi- mental and numerical study of elastic strain waves on the center line of a 6061-T6 Aluminum bar[ J]. Journal of ap- plied mechanics, 1972, 39(2) : 367-371.
  • 10HE L, MA G W, KARP B, et al. Investigation of dynamic saint-venant' s principle in a cylindrical waveguide-experi- mental and numerical results [ J ]. Experimental mechanics, 2015, 55(3): 623-634.

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部