期刊文献+

基于动态SVM的网络入侵检测研究 被引量:1

Research of the Intrusion Detection Based on Dynamic Support Vector Machine
下载PDF
导出
摘要 针对支持向量机分类方法在小样本、非线性情况下具有较好的泛化性能的特点,结合入侵检测系统实时性和适应性的要求,提出了一种应用动态支持向量机的入侵检测系统,来提高SVM模型的分类精度,并详细介绍了系统训练集以及分类模型动态更新的方法。最后对系统进行了仿真验证。实验仿真表明,该系统可有效的提高入侵检测的准确率,改善由于数据集更新造成的SVM分类精度下降的情况。 Support vector machine classification approach is considered has good generalization performance especially in small number and non-linear of training samples.Combining with the real-time performance and adaptability of IDS,a novel IDS based on dynamic support vector machine is established.The updating method of system training datasets and classification model is described in detail.Finally,simulation experiment for this system is performed,the result shows that this system can effectively improve the classification excursion caused by datasets updating,and enhance the true positive rate of the IDS.
出处 《计算机与数字工程》 2012年第11期118-120,共3页 Computer & Digital Engineering
关键词 支持向量机 入侵检测 数据集更新 support vector machine intrusion detection dataset updating
  • 相关文献

参考文献4

二级参考文献45

  • 1俞研,黄皓.基于改进多目标遗传算法的入侵检测集成方法(英文)[J].软件学报,2007,18(6):1369-1378. 被引量:21
  • 2董肇军.系统工程与运筹学[M].北京:国防工业出版社,2003.
  • 3Ozme S,Aleham D,yalaz K,et al. Causes of syncope in children:a prospective study.Int J Cardiol, 1993,40(2):111-114
  • 4Cannady J.Artificial neural networks for misuse detection.In:Proc.of the '98 National Information System Security Conf.(NISSC'98).Arlington:Virginia Press,1998.443-456.
  • 5Shon T,Seo J,Moon J.SVM approach with a genetic algorithm for network intrusion detection.In:Proc.of the 20th Int'l Symp.on Computer and Information Sciences (ISCIS 2005).Berlin:Springer-Verlag,2005.224-233.
  • 6Mukkamala S,Sung AH,Abraham A.Intrusion detection using an ensemble of intelligent paradigms.Journal of Network and Computer Applications,2005,28(2):167-182.
  • 7Chebrolu S,Abraham A,Thomas JP.Feature deduction and ensemble design of intrusion detection systems.Computer & Security,2004,24(4):295-307.
  • 8Hansen LK,Salamon P.Neural network ensembles.IEEE Trans.on Pattern Analysis and Machine Intelligence,1990,12(10):993-1001.
  • 9Opitz DW.Feature selection for ensembles.In:Proc.of the 16th National Conf.on Artificial Intelligence (AAAI).Orlando:AAAI Press,1999.379-384.
  • 10Tsymbal A,Puuronen S,Patterson DW.Ensemble feature selection with the simple Bayesian classification.Information Fusion,2003,4(2):87-100.

共引文献73

同被引文献6

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部