期刊文献+

基于多核函数的模糊支持向量机学习算法 被引量:11

Learning Algorithm Based on Fuzzy Support Vector Machine of Multi-Core Functions
原文传递
导出
摘要 作者针对单个核函数构成的SVM并不能满足诸如数据异构或不规则、样本规模巨大、样本分布不平坦等实际应用的需求,而将多个核函数进行组合,以获得更好的效果,提出一种基于多核的模糊支持向量机算法。此算法决策树中的模糊核权重主要是借助于样本各自的模糊因子来确定。仿真实验数据表明:与传统单核函数支持向量机相比,多核模糊支持向量机具有很好的优越性。 In order to solve those question which a kernel function can not meet, such as heterogeneous or irregmar ,data, largc sample size, uneven distribution of the sample the acttlal application requirements, and obtain better results, the author of this paper proposes a support vector machine algorithm based on multi-core fuzzy. Fuzzy kernel weights of this decision tree algo- rithm is mainly determined by the fuzzy factors of the sample. The simulation data show that multi-core fuzzy support vector machine has the good the superiority compared with the traditional single-kernel function support vector machine.
作者 徐国浪 魏延
出处 《重庆师范大学学报(自然科学版)》 CAS 北大核心 2012年第6期50-53,共4页 Journal of Chongqing Normal University:Natural Science
基金 重庆市教委科技计划项目(No.KJ090823) 重庆师范大学博士研究基金(No.11XLB047)
关键词 多核 模糊集 模糊支持向量机 多核分类算法 multi-core fuzzy set fuzzy support vector machine multi-core classification algorithm
  • 相关文献

参考文献9

二级参考文献79

  • 1张炤,张素,章琛曦,陈亚珠.基于支持向量机的概率密度估计方法[J].系统仿真学报,2005,17(10):2355-2357. 被引量:24
  • 2蔡铁,朱杰.一种基于类融合向量的支持向量机及其在语音识别系统中的应用[J].电路与系统学报,2005,10(6):106-110. 被引量:1
  • 3张翔,肖小玲,徐光祐.模糊支持向量机中隶属度的确定与分析[J].中国图象图形学报,2006,11(8):1188-1192. 被引量:38
  • 4佘廉.航空交通灾害预警管理[M].石家庄:河北科学技术出版社,2004:356-362.
  • 5[1]Forrest S, Perrelason AS, Allen L, Cherukur R. Self_Nonself discrimination in a computer. In: Rushby J, Meadows C, eds. Proceedings of the 1994 IEEE Symposium on Research in Security and Privacy. Oakland, CA: IEEE Computer Society Press, 1994. 202~212.
  • 6[2]Ghosh AK, Michael C, Schatz M. A real-time intrusion detection system based on learning program behavior. In: Debar H, Wu SF, eds. Recent Advances in Intrusion Detection (RAID 2000). Toulouse: Spinger-Verlag, 2000. 93~109.
  • 7[3]Lee W, Stolfo SJ. A data mining framework for building intrusion detection model. In: Gong L, Reiter MK, eds. Proceedings of the 1999 IEEE Symposium on Security and Privacy. Oakland, CA: IEEE Computer Society Press, 1999. 120~132.
  • 8[4]Vapnik VN. The Nature of Statistical Learning Theory. New York: Spring-Verlag, 1995.
  • 9[5]Lee W, Dong X. Information-Theoretic measures for anomaly detection. In: Needham R, Abadi M, eds. Proceedings of the 2001 IEEE Symposium on Security and Privacy. Oakland, CA: IEEE Computer Society Press, 2001. 130~143.
  • 10[6]Warrender C, Forresr S, Pearlmutter B. Detecting intrusions using system calls: Alternative data models. In: Gong L, Reiter MK, eds. Proceedings of the 1999 IEEE Symposium on Security and Privacy. Oakland, CA: IEEE Computer Society Press, 1999. 133~145.

共引文献2503

同被引文献113

引证文献11

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部