期刊文献+

一种影响织造过程的不确定性预测理论模型 被引量:5

A Theoretical Model of the Uncertainty Forcasting on Weaving Process
下载PDF
导出
摘要 以纺织企业织造过程中常出现的诸如设备"丢产"、"虚产",人为"估产",以及监控系统的"数据异常"等异常现象为切入点,对织造过程中实际存在的问题进行了研究,并对影响织造过程异常的不确定性因素进行了分析;从人、机、材料、方法、环境等角度出发对各类不确定性因素进行了分类整理,构建了一种基于多Agent的织造过程不确定性预测模型;在此模型下,构建了一种多源纺织信息融合模型,并对多源纺织信息融合处理的过程、方法、基本原理、基本步骤,以及人—机—环境脆性模型进行了阐述,给出了一种解决"异常现象"的理论模型,实现了对织造过程不确定性预测的目的。 Aiming at some abnomal problems such as lost yeld and virtual yield for the equipment, estimation yield for the worker,and data exception for the monitoring system and such,occurring frequently in the weaving process of the textile enterprises, above all, the exsist problems with weaving process are studied including the uncertainties that lead the abnormal events. Then all kinds of the uncertainties are classified and sorted from the perspective of man, machine, material, methods and the environment and such. A multi-agent forcasting theory model for the uncertainties of weaving process is proposed. Under this theoretical model, a multi-source textile information fusion model is built including process, method, basic principles and steps of multi-source textile information fusion, as well as man-machine-environment brittle model. Finally, a theoretical model to solve the abnomal problems is given, consequently, the purpose of the prediction of the uncertainties in the weaving process achieved.
出处 《纺织器材》 2012年第6期57-62,共6页 Textile Accessories
基金 纺织工业协会指导性计划项目(2011081) 陕西省教育厅科研计划项目(11JK1055)
关键词 不确定性 纺织企业 预测 多源信息融合 织造 uncertainty textile enterprise forcasting multisource information fusion weaving
  • 相关文献

参考文献20

  • 1李海林,郭崇慧,邱望仁.正态云模型相似度计算方法[J].电子学报,2011,39(11):2561-2567. 被引量:95
  • 2陈贵林.一种定性定量信息转换的不确定性模型——云模型[J].计算机应用研究,2010,27(6):2006-2010. 被引量:54
  • 3Li D Y,Cheng D W,Shi X M,et al. Uncertainty reasoning based on cloud models in controllers[J]. Computers and Mathematics with Applications, 1998, 35 (3): 99- 123.
  • 4Jouko Lampinen, Aki Vehtari. Bayesian approach for neural networks-review and case studies [J]. Neural Networks, 2001,14 (3) : 257-274.
  • 5John W,Jayawardena A W,Fernando T M K G. River flow forecasting: use of phase-space reconstruction and artificial neural networks approaches[J]. Journal of Hydrology, 2002,265 (1) : 225-245.
  • 6Jonathan G. Campbell, Ridolfi L. Nonlinear analysis of river flow time sequences [J]. Water Resources Research, 1997,33(6): 1353-1367.
  • 7Abdulla. A, Elishakoff I. Convex models of uncertainty in applied mechanics [M]. Amsterdam.. Elsevier Science, 1990.
  • 8Zahi S, Thomas Martin, Lian H D, et al. Interval static displacement analysis for structures with interval parameters[J]. International Journal for Numerical Methods in Engineering, 2002,53 (2) : 393-407.
  • 9吕林涛,安婧.一种自组织双模糊神经网络控制算法[J].计算机工程与应用,2011,47(17):221-223. 被引量:3
  • 10王万良,王磊,王海燕,徐新黎,赵燕伟.基于混合差分进化算法的作业车间动态调度[J].计算机集成制造系统,2012,18(3):531-539. 被引量:11

二级参考文献114

共引文献165

同被引文献85

  • 1王玉亮,于伟东.毛精纺中织造质量的BP神经网络预报技术[J].东华大学学报(自然科学版),2006,32(1):84-88. 被引量:6
  • 2FATTAHI S R, SEYED A H, TAHERI S M. Two-wayprediction of cotton yarn properties and fiber propertiesusing multivariate multiple regression[ J]. Journal of theTextile Institute,2011 ,102(10) : 849 -856.
  • 3MALIK S A, TANWARI A, SYED U, et al. Blendedyarn analysis: part I-influence of blend ratio and breakdraft on mass variation, hairiness, and physicalproperties of 15 tex PES/CO blended ring-spun yarn [ J ].Journal of Natural Fibers ,2012,9(3) : 197 - 206.
  • 4MATTES A,PUSCH T, CHERIF C. Numericalsimulation of yarn tensile force for dynamic yarn supplysystems of textile machines [ J ] . Journal of the TextileInstitute,2012,103(l) :70 -79.
  • 5SELVANAYAKI M, VIJAVA M S, JAMUNA K S, etal. An interactive tool for yarn strength prediction usingsupport vector regression [ C ] // Proceedings of the 2ndInternational Conference on Machine Learning andGomputing(ICMLC 2010) ,2010:335 -339.
  • 6FATTAHI S, TAHERI S M,RAVANDI H. Cotton yarnengineering via fuzzy least squares regression[ J]. Fibersand Polymers,2012,13(3) :390 - 396.
  • 7MOKHTAR S, BEN A S, SAKLI F. Optimization oftextile parameters of plain woven vascularprostheses[ J]. Journal of the Textile Institute, 2010 ,101(12) :1095 - 1105.
  • 8FALLAHPOUR A R, MOGHASSEM A R. Spinningpreparation parameters selection for rotor spun knittedfabric using VIKOR method of multicriteria decision-making [J ]. Journal of the Textile Institute, 2013 ,104(1) :7 - 17.
  • 9MOHAMED N,SAMAR A E. Prediction of some cottonfiber blends properties using regression models [ J ].Alexandria Engineering Journal, 2008 ,47 ( 2 ) : 147 -153.
  • 10MWASIAGI J I,HUANG X B, WANG X H. The use ofhybrid algorithms to improve the performance of yarnparameters prediction models [ J ] . Fibers and Polymers,2012,13(9) :1201 - 1208.

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部