期刊文献+

多特征融合的鲁棒图像匹配 被引量:1

Robust SIFT Image Matching Algorithm Based on Unsupervised Learning
下载PDF
导出
摘要 针对三种常见的图像匹配方法的优缺点进行了分析。然后利用一种常用的数据融合方法——DS理论,对匹配结果进行融合判断。最终形成了一种融合匹配算法,从而克服了单个特征和算法的局限性,实现了多特征、多算法优势互补,提高了匹配的适应性。 On the basis of previous study of three common image matching method with different feature, their performance and adaptability an analazed, and then a simple data fusion method-DS theory judge their matches is used, and ultimately the formation of a fusion matching algorithm, thereby overcoming the limitations of the individ- ual features and algorithms is achieved a multi-feature, multi-algorithm complement each other, improved the adaptability of matching.
作者 李长荣
出处 《科学技术与工程》 北大核心 2012年第32期8746-8749,共4页 Science Technology and Engineering
关键词 图像匹配 信息融合 多特征 image matching data fusion multi-feature
  • 相关文献

参考文献5

  • 1刘准钆,程咏梅,潘泉,苗壮.证据冲突下自适应融合目标识别算法[J].航空学报,2010,31(7):1426-1432. 被引量:22
  • 2Huttenlocher D P, Klanderman G A, Ruehlidge W J. Comparing im- ages using the Hausdorff distance. IEEE Transactions on Pattern Analysis And Machine Intelligence, 1993,15 ( 9 ) : 850-863.
  • 3Dubuisson M P, Jain A K. A modified Hausdorff distance for object matching. Proceedings of the 12th International Conference on Pattern Recognition, Jerusalem, Israel: 1994.
  • 4孙卜郊,周东华.基于NCC的快速匹配算法[J].传感器与微系统,2007,26(9):104-106. 被引量:29
  • 5Lowe D G. Object recognition from local scale-invariant features. Proc of seventh Intl Conf Computer Vision, 1999 : 1150-1157.

二级参考文献18

  • 1黄金,梁彦,程咏梅,潘泉,胡劲文.基于序列图像的自动目标识别算法[J].航空学报,2006,27(1):87-93. 被引量:19
  • 2叶清,吴晓平,宋业新.基于权重系数与冲突概率重新分配的证据合成方法[J].系统工程与电子技术,2006,28(7):1014-1016. 被引量:33
  • 3Shafer G.A mathematical theory of evidence[M].Princeton,N J:Princeton University Press,1976.
  • 4Delmotte F,Smets P.Target identification based on the transferable belief model interpretation of Dempster-Shafer model[J].IEEE Transactions on Systems,Man,and Cybernetics-Part A:Systems and Humans,2004,34(4):457-471.
  • 5Deng Y,Shi W K,Zhu Z F,et al.Combining belief functions based on distance of evidence[J].Decision Support Systems,2004,38(3):489-493.
  • 6Dubois D,Prade H.Representation and combination of uncertainty with belief functions and possibility measures[J].Computational Intelligence,1988(4):244-264.
  • 7Smarandache F,Dezert J.Proportional conflict redistribution rules for information fusion[M] ∥Smarandache F,Dezert J.Applications and advances of DSmT for information fusion.Rehoboth:American Research Press.2006:3-68.
  • 8Jousselme A L,Grenier D,Bosse E.A new distance between two bodies of evidence[J].Information Fusion,2001,2(2):91-101.
  • 9Liu W.Conflict analysis and merging operators selection in possibility theory[C] ∥Proceedings of the Ninth European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty.2007:816-827.
  • 10Liu W.Analyzing the degree of conflict among belief functions[J].Artificial Intelligence,2006,170(11):909-924.

共引文献49

同被引文献29

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部