期刊文献+

Fabrication of air-bridged Kerr nonlinear polymer photonic crystal slab structures in near-infrared region

Fabrication of air-bridged Kerr nonlinear polymer photonic crystal slab structures in near-infrared region
原文传递
导出
摘要 Fabrication details of air-bridged Kerr nonlinear polymer photonic crystal slab structures are presented. Both the two-dimensional photonic crystal slab and the one-dimensional nanobeam structures are fabricated using direct focused ion beam etching and subsequent wet chemical etching. The scanning electron microscopy images show the uniformity and homogeneity of the cylindrical air holes. The optical measurement in the near-infrared region is implemented using the tapered fiber coupling method, and the results agree with the numerical calculations by using the three-dimensional finite-difference time-domain method. Fabrication details of air-bridged Kerr nonlinear polymer photonic crystal slab structures are presented. Both the two-dimensional photonic crystal slab and the one-dimensional nanobeam structures are fabricated using direct focused ion beam etching and subsequent wet chemical etching. The scanning electron microscopy images show the uniformity and homogeneity of the cylindrical air holes. The optical measurement in the near-infrared region is implemented using the tapered fiber coupling method, and the results agree with the numerical calculations by using the three-dimensional finite-difference time-domain method.
出处 《Chinese Optics Letters》 SCIE EI CAS CSCD 2012年第11期74-76,共3页 中国光学快报(英文版)
基金 supported by the National Basic Research Foundation of China(No.2011CB922002) the Knowledge Innovation Program of Chinese Academy of Sciences(No.Y1V2013L11)
关键词 Finite difference time domain method Infrared devices Optical data processing Photonic crystals Scanning electron microscopy Time domain analysis Wet etching Finite difference time domain method Infrared devices Optical data processing Photonic crystals Scanning electron microscopy Time domain analysis Wet etching
  • 相关文献

参考文献19

  • 1M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, Phys. Rev. Lett. 73, 1368 (1994).
  • 2R. E. Slusher and B. J. Eggleton, Nonlinear Photonic Crystals (Springer, Berlin, 2003).
  • 3Y. Liu, F. Qin, Z. Y. Wei, Q. B. Meng, D. Z. Zhang, and Z. Y. Li, Appl. Phys. Lett. 95, 131116 (2009).
  • 4Y. Liu, F. Qin, F. Zhou, q. B. Meng, D. Z. Zhang, and Z. Y. Li, Front. Phys. China 5, 220 (2010).
  • 5K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, Nature Photon. 6~ 248 (2012).
  • 6J. D. Cox and M. R. Singh, J. Appl. Phys. 108, 083102 (2010).
  • 7M. R. Singh and R. H. Lipson, J. Phys. B: At. Mol. Opt. Phys. 41, 015401 (2008).
  • 8Z. Y. Zheng, X. Z. Liu, Y. H. Luo, B. Y. Cheng, D. Z. Zhang, Q. B. Meng, Wang, and Y. R. Wang, Appl. Phys. Lett. 90, 051910 (2007).
  • 9H. Dong, J. Gao, X. Kong, M. Cai, and L. Shi, Chin. Opt. Lett. 5, 580 (2007).
  • 10R. R. Panepucci, B. H. Kim, V. R. Almeida, and M. D. Jones, J. Vac. Sci. Technol. B 22, 3348 (2004).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部