期刊文献+

Generalized Maupertuis' Principle with Applications

Generalized Maupertuis’ Principle with Applications
原文传递
导出
摘要 We give a rigorous proof of the equivalence of Manes supercritical potential and the minimal action with respect to an associated Jacobi-Finsler metric. As a consequence, we give an explicit representation of the weak KAM solutions of one-dimensional mechanical systems without the quadratic assumption on the kinetic energy term of the Hamiltonians, and a criterion of the integrability result for such a system of arbitrary degree of freedom by the regularity assumption on Mather's a- function is discussed. We give a rigorous proof of the equivalence of Manes supercritical potential and the minimal action with respect to an associated Jacobi-Finsler metric. As a consequence, we give an explicit representation of the weak KAM solutions of one-dimensional mechanical systems without the quadratic assumption on the kinetic energy term of the Hamiltonians, and a criterion of the integrability result for such a system of arbitrary degree of freedom by the regularity assumption on Mather's a- function is discussed.
作者 Wei CHENG
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2012年第11期2153-2160,共8页 数学学报(英文版)
基金 Supported by the National Basic Research Program of China (Grant No. 2007CB814800) Natural Scientific Foundation of China (Grant No. 10971093)
关键词 Generalized Maupertuis' principle weak KAM solutions a-function Generalized Maupertuis' principle, weak KAM solutions, a-function
  • 相关文献

参考文献19

  • 1Mather, J. N.: Action minimizing invariant measures for positive definite Lagrangian systems. Math. Z., 207, 169-207 (1991).
  • 2Mather, J. N.: Variational construction of connecting orbits. Ann. Inst. Fourier (Grenoble), 43, 1349-1386 (1993).
  • 3Fathi, A., Siconolfi, A.: PDE aspects of Aubry-Mather theory for quasiconvex Hamiltonians. Calc. Vat. Partial Differential Equations, 22, 185-228 (2005).
  • 4Arnold, V. I.: Mathematical Methods of Classical Mechanics, 2nd ed., Graduate Texts in Mathematics, 60, Springer-Verlag, New York, 1989.
  • 5Contreras, G., Iturriaga, R., Paternain, G. P., et al.: Lagrangian graphs, minimizing measures and Mafi~'s critical values. Geom. Funct. Anal., 8, 788-809 (1998).
  • 6Iturriaga, R., Sanchez-Morgado, H.: Finsler metrics and action potentials. Proc. Amer. Math. Soc., 128, 3311-3316 (2000.
  • 7Evans, L. C., Gomes, D.: Effective Hamiltonians and averaging for Hamiltonian dynamics. I. Arch. Ration. Mech. Anal., 157, 1-33 (2001).
  • 8Fathi, A.: Weak KAM Theorem in Lagragian Dynamics, to be published by Cambridge University Press.
  • 9Fathi, A., Siconolfi, A.: Existence of C1 critical subsolutions of the Hamilton-Jacobi equation. Invent. Math., 155, 363-388 (2004).
  • 10Hiriart-Urruty, J.-B., Lemarechal, C.: Fundamentals of Convex Analysis, Grundlehren Text Editions, Springer-Verlag, Berlin, 2001.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部