期刊文献+

基于分数阶滑模控制技术的永磁同步电机控制 被引量:73

Fractional order sliding-mode control for permanent magnet synchronous motor
下载PDF
导出
摘要 针对传统整数阶滑模控制系统中存在的抖震问题,本文提出了分数阶滑模控制策略并应用到永磁同步电机的速度控制.传统滑模控制器中的开关函数由作用在切换流型或其整数阶导数面推广到其分数阶导数面,利用分数阶系统的特性,缓慢地传递系统的能量,有效地削减抖震.本文采用模糊逻辑推理算法,实现软开关切换增益的自整定.仿真和实验证明,本文提出的分数阶滑模控制系统不但能有效地削减抖震,而且能保持滑模控制器对系统参数变化和外部扰动的鲁棒性. To deal with the chattering phenomenon existing in conventional integral order sliding-mode controller, we proposed a fractional order sliding-mode controller and apply to control the permanent magnet synchronous motor (PMSM). The soft-switching will not directly act on the sliding-mode surface or on its integral order derivative, but on its fractional order derivative. According to the property of fractional calculus, this action will reduce the chattering. Moreover, the fuzzy logic inference algorithm is used to obtain the gain of soft-switching. Simulations and experiments show that the proposed fractional order sliding-mode controller not only achieves better control performance than the conventional integral sliding- mode control systems, but is also robust with regard to system parameter variations and external disturbances.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2012年第9期1193-1197,共5页 Control Theory & Applications
基金 广东省教育部产学研结合项目资助项目(2009B090300269)
关键词 分数阶 滑模控制 模糊逻辑推理 抖震 fractional order sliding-mode control fuzzy logic inference chattering
  • 相关文献

参考文献14

  • 1张伟,毛剑琴.基于模糊树模型的自适应模糊滑模控制方法[J].控制理论与应用,2010,27(2):263-268. 被引量:11
  • 2罗小元,朱志浩,关新平.非线性时滞系统的抖振削弱自适应滑模控制[J].控制与决策,2009,24(9):1429-1431. 被引量:7
  • 3BAIK I C, KIM K H, YOUN M J. Robust nonlinear speed control of pm synchronous motor using boundary layer integral sliding mode control technique [J]. IEEE Transactions on Control Systems Tech- nology, 2000, 8(3): 47 - 54.
  • 4CHRISTOPHER E, SARAH K S, RON J E Sliding mode observers for fault detection and isolation [J]. Automatica, 2000, 36(3): 541 - 553.
  • 5LIN D, WANG X Y. Observer-based decentralized fuzzy neural slid- ing mode control for interconnected unknown chaotic systems via network structure adaptation [J]. Fuzzy Sets and Systems, 2010, 16(1 ): 2066 - 2080.
  • 6FRANCESCO D, ANTONELLA E Higher order sliding mode con- trollers with optimal reaching [J]. 1EEE Transactions on Automatica Control, 2009, 54(9): 98 - 104.
  • 7AR1E L. Homogeneity approach to high-order sliding mode de- sign [J]. Automatica, 2005, 41(5): 823 - 830.
  • 8BOIKO I, FRIDMAN L, CASTELLANOS M I. Analysis of second order sliding mode algorithms in the frequency domain [J]. IEEE Transactions on Automatica Control, 2004, 49(6): 946 - 950.
  • 9MAGDY M. Abdelhameed, enhancement of sliding mode controller by fuzzy logic with application to robotic manipulators [J]. Mecha- tronics, 2005, 15(4): 439 - 458.
  • 10RONG J W. Fuzzy sliding-mode control using adaptive tuning tech- nique [J]. IEEE Transactions on Industrial Electronics, 2007, 54(1): 78-87.

二级参考文献22

  • 1Li X Q, Decarlo R A. Robust sliding mode of uncertain time-delay systems[J]. Int J of Control, 2003, 76(13): 1296-1305.
  • 2Huang Y J, Kuo T C. Robust output tracking control for nonlinear time-varying robotic manipulators [J]. Electrical Engineering, 2005, 87(1): 47-55.
  • 3Slotine J J, Li W. Applied nonlinear control [M]. Englewood Cliffs.. Prentice-Hall, 1991.
  • 4Huang Y J, Kuo T C. Robust position control of DC servomechanism with output measurement noise [J]. Electrical Engineering, 2006, 88(3): 223-338.
  • 5Furuta K. VSS type self-tuning control[J]. IEEE Trans on Industrial Electronics, 1993, 40(1): 37-44.
  • 6Lee P M, Oh J H. Improvements on VSS type self-tuning control for a tracking controller[J]. IEEE Trans on Industrial Electronics, 1998, 45(2) : 319-25.
  • 7Chang W D, Hwang R C, Hsieh J G. Application of an auto-tuning neuron to sliding mode eontrol[J]. IEEE Trans on Systems, Man and Cybernetics, 2002, 32(4): 517-519.
  • 8Lhee C G, Park J S, Ahn H S, et al. Sliding mode-like fuzzy logic control with self-tuning the dead zone parameters[J]. IEEE Trans on Fuzzy Systems, Man and Cybernetics, 2001, 9(2): 343-348.
  • 9Lee H, Kim E, Kang H J, et al. A new sliding-mode control with fuzzy boundary layer[J]. Fuzzy Sets and Systems, 2001, 120(1): 135-43.
  • 10Kuo T C, Huang Y J, control with self-tuning systems[J]. ISA Trans, Chang S H. Sliding mode law for uncertain nonlinear 2008, 47(2): 171-178.

共引文献13

同被引文献620

引证文献73

二级引证文献476

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部