期刊文献+

基于决策树分类的云作业调度算法研究与实现 被引量:5

Cloud Scheduling Algorithm Based on the Decision Tree Classification
下载PDF
导出
摘要 为了解决在云环境下,由于作业规模的不断增大和种类的不断增多而导致的调度执行混乱的问题,提出了利用决策树C4.5算法对调度作业进行分类的方法。该方法采用自顶向下的递归方式,将一组无序的数据整理成类似于流程图的结构,并对所得数据进行最大"差异"切分,最终得到大规模问题的简单集。将该方法应用于云调度算法中,参数反演结果反映了在执行效率和客户满意度等方面,较传统的调度算法都有较大的提高,从而也验证了该方法的有效性。 As a result of the increasing sizes and types of the jobs in the cloud environment, the job scheduling execution becomes more and more confusion. To solve the chaos, a method based on the C4.5 algorithm of decision tree to classify the jobs before scheduling was intro duced,which uses the top-down reeursive approach to organize a set of unordered data into flow chartqike structure,and to segement the data based on the atmost "difference" to get the simple set of the large-scale problems. The method was used in the cloud scheduling algorithm and the parameters showed a higher executive efficiency and a better customer satisfaction compared with the traditional method. Thus, the results illustrated the validity of this method.
出处 《太原理工大学学报》 CAS 北大核心 2012年第6期715-718,共4页 Journal of Taiyuan University of Technology
基金 国家自然科学基金资助项目(61202163) 山西省自然科学基金资助项目(2012011015-1) 山西省攻关项目(20120313032-3)
关键词 决策树 作业调度 训练 decision tree job scheduling training
  • 相关文献

参考文献12

二级参考文献92

  • 1李微,方圣辉,佃袁勇,郭建星.基于光谱分析的MODIS云检测算法研究[J].武汉大学学报(信息科学版),2005,30(5):435-438. 被引量:57
  • 2Moore AW, Zuev D. Internet traffic classification using Bayesian analysis techniques. In: Proc. of the 2005 ACM SIGMETRICS Int'l Conf. on Measurement and Modeling of Computer Systems, Banff, 2005. 50-60. http://www.cl.cam.ac.uk/-awm22 /publications/moore2005internet.pdf.
  • 3Madhukar A, Williamson C. A longitudinal study of P2P traffic classification. In: Proc. of the 14th IEEE Int'l Syrup. on Modeling, Analysis, and Simulation. Monterey, 2006. http://ieeexplore.ieee.org/xpl/ffeeabs_all.jsp?arnumber=1698549.
  • 4Moore AW, Papagiannaki K. Toward the accurate identification of network applications. In: Dovrolis C, ed. Proc. of the PAM 2005. LNCS 3431, Heidelberg: Springer-Verlag, 2005.41-54.
  • 5Karagiannis T, Papagiannaki K, Faloutsos M. BLINC: Multilevel traffic classification in the dark. In: Proc. of the ACM SIGCOMM. Philadelphia, 2005. 229-240. http://conferences.sigcomm.org/sigcomm/2005/paper-KarPap.pdf.
  • 6Roughan M, Sen S, Spatscheck O, Dutfield N. Class-of-Service mapping for QoS: A statistical signature-based approach to IP traffic classification. In: Proc. of the ACM SIGCOMM Internet Measurement Conf. Taormina, 2004. 135-148. http://www.imconf.net/imc-2004/papers/p 135-roughan.pdf.
  • 7Zuev D, Moore AW. Traffic classification using a statistical approach. In: Dovrolis C, ed. Proc. of the PAM 2005. LNCS 3431, Heidelberg: Springer-Verlag, 2005. 321-324.
  • 8Nguyen T, Armitage G. Training on multiple sub-flows to optimise the use of Machine Learning classifiers in real-world IP networks. In: Proc. of the 31 st IEEE LCN 2006. Tampa, 2006. http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4116573.
  • 9Eerman J, Mahanti A, Arlitt M. Internct traffic identification using machine learning techniques. In: Proc. of the 49th IEEE GLOBECOM. San Francisco, 2006. http://pages.cpsc.ucalgary.ca/-mahanti/papers/globecom06.pdf.
  • 10Erman J, Arlitt M, Mahanti A. Traffic classification using clustering algorithms. In: Proc. of the ACM SIGCOMM Workshop on Mining Network Data (MineNet). Pisa, 2006. http://conferences.sigcomm.org/sigcomm/2006/papers/minenet-01.pdf.

共引文献537

同被引文献46

  • 1涂刚,阳富民,卢炎生.基于动态优先级策略的最优软非周期任务调度算法[J].计算机研究与发展,2004,41(11):2026-2034. 被引量:20
  • 2FRANK A, ASUNCION A. UCI machine learning repository [ EB/OL ]. http://mlr, cs. umass, edu/ml, 2011 - 11-02.
  • 3Foster I, Zhao Y, Raicu I, et al.Cloud computing and grid computing 360-degree compared[C]//Grid Computing Environments Workshop, GCE' 08,2008 : 1 - 10.
  • 4Vaquero L, Rodero-Merino L, Caceres J, et al.A break in the clouds: towards a cloud definition[J].ACM SIGCOMM Computer Communication Review, 2008,39( 1 ) : 50-55.
  • 5Fox A,Griffith R, Joseph A, et al.Above the clouds: a Berkeley view of cloud computing[R].Berkeley: University of California, 2009 : 28-34.
  • 6Buyya R, Yeo C S, Venugopal S, et al.Cloud computing and emerging IT platforms: vision, hype, and reality for delivering computing as the 5th utility[J].Future Genera- tion Computer Systems, 2009,25 (6) : 599-616.
  • 7Fard H M, Produ R, Fahringer T.A truthful dynamic work-flow scheduling mechanism for commercial multi-cloud environments[J].IEEE Transactions on Parallel and Dis- tributed Systems, 2012,24 (6) : 1203-1212.
  • 8Hovestadt M, Kao O, Kliem A, et al.Adaptive online compression in clouds-making informed decisions in vir- tual machine environments[J].Journal of Grid Comput- ing,2013,7( 1 ) :41-57.
  • 9Belalen G, Tayeb F Z, Zaoui W.Approaches to improve the resources management in the simulator CloudSim[C]// Proc of the 1st International Conference of Information Computing and Applications, 2010 : 189-196.
  • 10Speitkarap B, Bichler M.A mathematical programming approach for server consolidation problems in virtualized data centers[J].IEEE Transactions on Services Computing, 2010,3(4) :266-278.

引证文献5

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部