期刊文献+

基于混合熵和L_1范数的遥感图像分类 被引量:3

Remote sensing image classification based on hybrid entropy and L_1 norm
原文传递
导出
摘要 针对遥感图像数据具有的高维数、非线性以及海量无标记样本的特性,提出了一种基于混合熵和L1范数的概率型最小二乘支持向量机分类方法.将准熵和熵差分融合,构造一种混合熵用以从海量无标记样本集中选出最有"价值"的待标记样本;基于L1范数距离度量,进一步从待标记样本集中筛选出孤立点和冗余点加以剔除;基于初始已标记样本以及筛选得到的样本,训练得到概率型最小二乘支持向量机.对反射光学系统的成像光谱仪(ROSIS)高光谱遥感图像进行了分类实验.结果表明:所提分类方法的总精度和Kappa系数分别达到了89.90%和0.868 5,能够以较少的训练样本得到较高的分类精度,其更适于处理遥感图像分类问题. Aiming at remote sensing image data having properties of high-dimension, nonlinearity, and massive unlabeled samples, a kind of probability least squares support vector machine (PLSSVM) classification method based on hybrid entroy and Ll-norm was proposed. At first, a hybrid entroy was designed by combining quasi-entropy with entropy difference, which was used to select the most 'valuable' unlabeled samples from the massive unlabeled sample set. In the second step, a L^-norm distance mectric was used to further select and to remove outliers and redundant data from the most 'valuable' unlabeled samples. At last, the original labeled and the selected unlabeled samples were adopted to train the PLSSVM. Experimental results on ROSIS hyperspectral remote sensing image show that the overall accuracy and Kappa coeffi- cient of the proposed classification method reach 89.90% and 0. 868 5 respectively. The pro- posed method can obtain higher classification accuracy with few training samples, which is much applicable for classification problem of remote sensing image.
出处 《中国矿业大学学报》 EI CAS CSCD 北大核心 2012年第6期971-977,共7页 Journal of China University of Mining & Technology
基金 国家自然科学基金项目(60804022 60974050 61072094) 教育部新世纪优秀人才支持计划项目(NCET-08-0836 NCET-10-0765) 霍英东教育基金会青年教师基金项目(121066)
关键词 遥感图像 混合熵 L1范数 主动学习 概率型最小二乘支持向量机 remote sensing image hybrid entropy L1 norm active learning probability leastsquares support vector machine
  • 相关文献

参考文献14

  • 1王圆圆,陈云浩,李京.模型树和支持向量回归在高光谱遥感中的应用[J].中国矿业大学学报,2006,35(6):818-823. 被引量:5
  • 2陈绍杰,李光丽,张伟,曹文.基于多分类器集成的煤矿区土地利用遥感分类[J].中国矿业大学学报,2011,40(2):273-278. 被引量:10
  • 3HAMANAKA Y, SHINODA K, TSUTAOKA T, et al. Committee-based active learning for speech recognition[J]. IEICE Transactions on Information and Systems, 2011, 94(10): 2015-2023.
  • 4ZHANG L J, CHEN C, BU J J, et al. Active learning based on locally linear reconstruction[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(10): 2026-2038.
  • 5SUN Z C, LIU Z G, LIU S H, et al. Active learning with support vector machines in remotely sensed im- age classification[C]//QIU P H, YIU C, ZHANG H, et al. Proceedings of the 2nd International Con gress on Image and Signal Processing. Piseataway: IEEE Computer Society, 2009: 1-6.
  • 6TUIA D, RATLE F, PACIFICI F, et al. Active learning methods for remote sensing image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(7): 2218-2232.
  • 7CHEN Y, HE Z. Blind separation using a class of new independence measures[C]//IEEE. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing. Piscataway: IEEE Signal Process, 2003: 309-312.
  • 8LONG J, YIN J P, ZHU E. An active learning method based on most possible misclassification sampling using committee [J]. Lecture Notes in Computer Science, 2007, 4617: 104-113.
  • 9BRUZZONE L, PERSELLO C. Active learning for classification of remote sensing images [C]//IEEE. Proceedings of IEEE International Geoscienee and Remote Sensing Symposium. Piscataway: IEEE Incorporated, 2009: 693-696.
  • 10GAO Yang, WANG Xuesong, CHENG Yuhu, PAN Jie School of Information and Electrical Engineering, China University of Mining & Technology, Xuzhou 221116, China.Fault diagnosis using a probability least squares support vector classification machine[J].Mining Science and Technology,2010,20(6):917-921. 被引量:4

二级参考文献42

共引文献16

同被引文献46

  • 1林剑,鲍光淑,王润生,王欣.基于模糊密度分解的遥感图像光谱和纹理信息的融合[J].电子学报,2004,32(12):2028-2030. 被引量:10
  • 2张继贤,李国胜,曾钰.多源遥感影像高精度自动配准的方法研究[J].遥感学报,2005,9(1):73-77. 被引量:45
  • 3MA J L,CHAN J C W,CANTERS F. Fully automat- ic subpixel image registration of multiangle CHRIS/ PROBA data[J]. IEEE Transactions on Geoscience and Remote Sensing,2010,48(7):2829-2839.
  • 4BROWN L. A survey of image registration techniques [J]. ACM Computing Surveys, 1992,24(4) :325-376.
  • 5ACKERMANN F. Digital image correlation.- perform- ance and potential application in photogrammetry[J]. The Photogrammetric Record, 1984, 11 (64) : 429- 439.
  • 6LOWED. Distinctive image features from scale-invar- iant key points[J]. International Journal of Computer Vision,2004,60(2) :91-110.
  • 7MIKOLAJCZYK K, SCHMID C. Scale & affine in- variant interest point detectors[J]. International Journal of Computer Vision,2004,60(1) :63-86.
  • 8MATAS J, CHUM O, URBAN M, et al. Robust wide-baseline stereo from maximally stable extremal regions[J]. Image Vision Computing, 2004, 22 (10) : 761-767.
  • 9MIKOLAJCZYK K, TUYTELAARS T, SCHMID C. A comparison of affine region detection[J]. Inter- national Journal of Computer Vision, 2005,65 (1) : 43-72.
  • 10TUYTELAARS T, VAN GOOL L. Matching wide- ly separated views based on affine invariant regions [J]. International Journal of Computer Vision, 2004, 59(1) :61-85.

引证文献3

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部