期刊文献+

基于新型快速收敛ES-FEM-T的三维固体黏弹塑性研究 被引量:1

Ultra Accurate Edge-based Smoothed Finite Element Method of Tetrahedron for Visco-elastoplastic Analysis of 3D Solid
下载PDF
导出
摘要 虽然四面体网格具有强大的几何表征能力,但因其'过硬'特性而工程实践中较少采用。如何使四面体网格'变软'是目前数值计算研究重点。通过采用广义的应变光滑操作,对四面体网格采用一种新型基于四面体边的应变光滑方法(Edge-based smoothed finite element method of tetrahedron,ES-FEM-T),并将该方法拓展到三维固体中黏弹塑性材料分析中。数值算例表明:在相同的网格时,ES-FEM-T计算效率要高于有限元和基于面光滑操作的有限元。由于该方法既继承四面体强大的几何表征能力,具有较好的计算效率和精度,具有广阔的工程运用前景。 The tetrahedral mesh is good at building three-dimensional solid finite element discrete model because of its powerful geometric characterization, while it behaviors overly-stiff property leading to large errors, which greatly limit the widely use of the tetrahedral mesh. Since the tetrahedral mesh is an important issue in computational mechanics and is also a main focus. A new type of edge-based smoothed finite element method of tetrahedron mesh(ES-FEM-T) is extended to 3D solid mechanics visco-elastoplastic material. Numerical examples verified that computational efficiency of the ES-FEM-T is higher than the finite element method(FEM) and face-based smoothed finite element method. This method not only inherits the strong tetrahedral geometry characterization capabilities, but also improves the accuracy and efficiency of the tetrahedral mesh, which has a broad engineering application prospects.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2012年第22期57-64,共8页 Journal of Mechanical Engineering
基金 国家自然科学基金资助项目(61232014)
关键词 数值方法 无网格方法 基于边的光滑有限元 黏弹塑性 Numerical method Meshfree method Edge-based smoothed finite element method oftetrahedron Visco-elastoplastic
  • 相关文献

参考文献3

二级参考文献26

  • 1吴恩华,柳有权.基于图形处理器(GPU)的通用计算[J].计算机辅助设计与图形学学报,2004,16(5):601-612. 被引量:227
  • 2XuDaoming JiaZhenyuan GuoDongming.DIRECT AND ADAPTIVE SLICING ON CAD MODEL OF IDEAL FUNCTIONAL MATERIAL COMPONENTS (IFMC)[J].Chinese Journal of Mechanical Engineering,2005,18(1):139-144. 被引量:3
  • 3马天飞,林逸,张建伟.轿车车室声固耦合系统的模态分析[J].机械工程学报,2005,41(7):225-230. 被引量:47
  • 4BELYTSCHKO T,LIN J I,TSAY C.Explicit algorithmsfor the nonlinear dynamics of shells[J].ComputeMethods in Applied Mechanics and Engineering,1984,20:225-251.
  • 5BELYTSCHKO T,STOLASKI H,CARPENTER N.AC0 triangular plate element with one-point quadrature[J].International Journal for Numerical Methods inEngineering,1984,20:787-802.
  • 6BATHE K J,IOSILEVICH A,CHAPELLE D.Anevaluation of the MITC shell finite elements[J].Computer&Structures,2004,82:945-962.
  • 7CUI X Y,LIU G R,LI G Y,et al.Analysis of plates andshells using an edge-based smoothed finite elementmethod[J].Computational Mechanics,2010,45:141-156.
  • 8ZHENG G,CUI X Y,LI G Y,et al.An edge-basedsmoothed triangle element for non-linear explicitdynamic analysis of shells[J].Computational Mechanics,2011,48(1):65-80.
  • 9JOLDES G R,WITTEK A,MILLER K.Real-timenonlinear finite element computations on GPU–Application to neurosurgical simulation[J].ComputerMethods in Applied Mechanics and En.
  • 10KRUGER J,WESTERMANN R.Linear algebraoperators for GPU implementation of numericalalgorithms[J].ACM Transactions on Graphics,2003,22:908-916.

共引文献23

同被引文献12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部