期刊文献+

OsDMI3 Is a Novel Component of Abscisic Acid Signaling in the Induction of Antioxidant Defense in Leaves of Rice 被引量:11

OsDMI3 Is a Novel Component of Abscisic Acid Signaling in the Induction of Antioxidant Defense in Leaves of Rice
原文传递
导出
摘要 Ca^2+ and calmodulin (CAM) have been shown to play an important role in abscisic acid (ABA)-induced anti- oxidant defense. However, it is unknown whether Ca^2+/CaM-dependent protein kinase (CCaMK) is involved in the pro- cess. In the present study, the role of rice CCaMK, OsDMI3, in ABA-induced antioxidant defense was investigated in leaves of rice (Oryza sativa) plants. Treatments with ABA, H2O2, and polyethylene glycol (PEG) induced the expression of OsDMI3 and the activity of OsDMI3, and H2O2 is required for the ABA-induced increases in the expression and the activity of OsDMI3 under water stress. Subcellular localization analysis showed that OsDMI3 is located in the nucleus, the cytoplasm, and the plasma membrane. The analysis of the transient expression of OsDMI3 in rice protoplasts and the RNA interference (RNAi) silencing of OsDMI3 in rice protoplasts showed that OsDMI3 is required for ABA-induced increases in the expression and the activities of superoxide dismutase (SOD) and catalase (CAT). Further, the oxidative damage induced by higher concentrations of PEG and H202 was aggravated in the mutant of OsDMI3. Moreover, the analysis of the RNAi silencing of OsDMI3 in protoplasts and the mutant of OsDMI3 showed that higher levels of H2O2 accumulation require OsDMI3 activation in ABA signaling, but the initial H2O2 production induced by ABA is not depend- ent on the activation of OsDMI3 in leaves of rice plants. Our data reveal that OsDMI3 is an important component in ABA-induced antioxidant defense in rice. Ca^2+ and calmodulin (CAM) have been shown to play an important role in abscisic acid (ABA)-induced anti- oxidant defense. However, it is unknown whether Ca^2+/CaM-dependent protein kinase (CCaMK) is involved in the pro- cess. In the present study, the role of rice CCaMK, OsDMI3, in ABA-induced antioxidant defense was investigated in leaves of rice (Oryza sativa) plants. Treatments with ABA, H2O2, and polyethylene glycol (PEG) induced the expression of OsDMI3 and the activity of OsDMI3, and H2O2 is required for the ABA-induced increases in the expression and the activity of OsDMI3 under water stress. Subcellular localization analysis showed that OsDMI3 is located in the nucleus, the cytoplasm, and the plasma membrane. The analysis of the transient expression of OsDMI3 in rice protoplasts and the RNA interference (RNAi) silencing of OsDMI3 in rice protoplasts showed that OsDMI3 is required for ABA-induced increases in the expression and the activities of superoxide dismutase (SOD) and catalase (CAT). Further, the oxidative damage induced by higher concentrations of PEG and H202 was aggravated in the mutant of OsDMI3. Moreover, the analysis of the RNAi silencing of OsDMI3 in protoplasts and the mutant of OsDMI3 showed that higher levels of H2O2 accumulation require OsDMI3 activation in ABA signaling, but the initial H2O2 production induced by ABA is not depend- ent on the activation of OsDMI3 in leaves of rice plants. Our data reveal that OsDMI3 is an important component in ABA-induced antioxidant defense in rice.
出处 《Molecular Plant》 SCIE CAS CSCD 2012年第6期1359-1374,共16页 分子植物(英文版)
基金 the National Basic Research Program of China,the National Natural Science Foundation of China,the Fundamental Research Funds for the Central Universities,the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions,the Natural Science Foundation of Jiangsu Province,the Research Fund for the Doctoral Program of Higher Education of China,the Program for New Century Excellent Talents in University,the grant from the Education Department of Jiangsu
关键词 OsDMI3 abscisic acid antioxidant defense H202 oxidative stress signal transduction. OsDMI3 abscisic acid antioxidant defense H202 oxidative stress signal transduction.
  • 相关文献

参考文献3

二级参考文献158

  • 1LIU Xin,WANG YouQun,JIA WenSuo,LOU ChengHou,ZHANG ShuQiu.Localization of NOS-like protein in guard cells of Vicia faba L.and its possible function[J].Chinese Science Bulletin,2007,52(1):84-90. 被引量:5
  • 2Sasaki, T., Mori, I.C., Furuichi, T., Munemasa, S., Toyooka, K., Matsuoka, K., Murata, Y., and Yamamoto, Y. (2010). Closing plant stomata requires a homolog of an aluminum-activated malate transporter. Plant Cell Physiol. 51, 354-365.
  • 3Sato, A., et al. (2009). Threonine at position 306 of the KAT1 potassium channel is essential for channel activity and is a target site for ABA-activated SnRK2/OSTI/SnRK2.6 protein kinase. Biochem. J. 424, 438-448.
  • 4Schoonheim, P.J., Sinnige, M.R, Casaretto, J.A., Veiga, H., Bunney, T.D., Quatrano, R.S., and de Boer, A.H. (2007). 14-3-3 adaptor proteins are intermediates in ABA signal transduction during barley seed germination. Plant J. 49, 289-301.
  • 5Schroeder, J., and Hagiwara, S. (1989). Cytosolic calcium regulates ion channels in the plasma membrane of Vicia faba guard cells. Nature. 338, 427-430.
  • 6Schwartz, A., Wu, W.-H., Tucker, E.B., and Assmann, S.M. (1994). Inhibition of inward K^+ channels and stomatal response by abscisic acid: an intracellular locus of phytohormone action. Proc. Natl Acad. Sci. U S A. 91, 4019-4023.
  • 7Schwarz, M., and Schroeder, J.I. (1988). Abscisic acid maintain S-type anion channel activity in ATP-depleted Vicia faba guard cells. FEBS Lett. 428, 177-182.
  • 8Scippa, G.S., DiMichele, M., Onelli, E., Patrignani, G., Chiatante, D., and Bray, E.A. (2004). The histone-like protein H1-S and the response of tomato leaves to water deficit. J. Exp. Bot. 55, 99-109.
  • 9Shang, Y., et al. (2010). The Mg-chelatase H subunit of Arabidopsis antagonizes a group of transcription repressors to relieve ABA-responsive genes of inhibition. Plant Cell. 22, 1909-1935.
  • 10Sharp, R.E., LeNoble, M.E., Else, M.A., Thorne, E.T., and Gherardi, F. (2000). Endogenous ABA maintains shoot growth in tomato independently of effects on plant water balance: evidence for an interaction with ethylene. J. Exp. Bot. 51, 1575-1584.

共引文献69

同被引文献82

引证文献11

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部