期刊文献+

基于LS-SVM的木材表面缺陷网格化检测 被引量:4

Wood surface defects gridding detection based on LS-SVM
下载PDF
导出
摘要 针对图像分割的复杂性和局限性,作者提出一种基于最小二乘支持向量机(LS-SVM)的木材表面缺陷网格化检测方法。首先将木材表面图像划分成互不重叠的矩形块,然后依次计算每个矩形块图像的特征向量,用于描述各个矩形块图像,其特征向量由颜色特征和纹理特征等参数共同组成。最后将特征向量归一化后送入LS-SVM分类器,利用特征向量的相似度来进行缺陷的定位和识别。实验结果表明,该方法可有效进行木材表面缺陷检测,检测准确率超过93%。 Due to the complexity and limitations of image segmentation,this paper proposed a wood surface defects gridding detection method based on least squares support vector machines(LS-SVM).The wood surface image was first divided into non-overlapping rectangular blocks.And then,every block's feature vector,which consisted of color features and texture features,was calculated to describe the blocks accurately.Finally,the extracted feature vectors were normalized and inputted into the LS-SVM classifier to locate and detect the defects.The experimental results have shown that this method can effectively identify the defect regions and the detection accuracy is higher than 93%.
机构地区 东北林业大学
出处 《林业科技开发》 北大核心 2012年第6期73-76,共4页 China Forestry Science and Technology
基金 林业公益性行业科研专项(编号:201004007) 国家自然科学基金项目(编号:30972314)
关键词 木材 缺陷检测 最小二乘支持向量机 wood defect detection LS-SVM
  • 相关文献

参考文献8

  • 1Cheng H D, Jiang X H, Sun Y, et al. Color image segmentation advances : and prospects [ J ]. Pattern recognition, 2001, 34 ( 12 ) :2259 -2281.
  • 2黄长专,王彪,杨忠.图像分割方法研究[J].计算机技术与发展,2009,19(6):76-79. 被引量:58
  • 3王林,白雪冰.基于Gabor变换的木材表面缺陷图像分割方法[J].计算机工程与设计,2010,31(5):1066-1069. 被引量:20
  • 4程杰铭,陈夏洁,顾凯.色彩学[M].北京:科学出版社,2001:124-125.
  • 5Smith J R,Chang S F. Automated binary texture feature sets for image retrieval[ C]//Proc IEEE Int. Conf Acoust Speech, and Signal Proc, 1996 : 2239-2242.
  • 6Haralick R M, Shanmugam K, Dinstein I H. Textural features for image classification[ J ]. IEEE Transactions on Systems, Man and Cybernetics, 1973, 3(6) :610-621.
  • 7Vapnik V N. The nature of statistical learning theory [ M ]. New York :Springer-Verlag New York Inc. ,2000.
  • 8Silven O, Matti N, Hannu K. Wood inspection with non-supervised clustering[ J ]. Machine Vision and Applications, 2003, 13 (5 - 6 ) : 275 -285.

二级参考文献31

共引文献75

同被引文献34

  • 1王国柱,周海宾,李文彬,撒潮.基于分水岭算法的木材缺陷边缘检测[J].林业科学,2006,42(3):111-115. 被引量:2
  • 2李云峰,曹渝昆,朱庆生,汪成亮.基于小波域隐马模型的树木类图像分割算法[J].计算机应用研究,2007,24(8):233-235. 被引量:8
  • 3仇逊超.王阿川.曹军.木材彩色图像缺陷分割:基于Gabor滤波的改进c-V彩色模型[J].计算机工程与应用,2012,48(5):164-167,206.
  • 4Zhao W R, Chellappa P J, Phillips A. Rosenfeld. Face recogni- tion: A literature survey[J]. Acm Computing Surveys (CSUR) , 2003,35 (4) :399-458.
  • 5Bovik A C, Clark M, Geisler W S. Multichannel texture analysis using localized spatial filters [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990,12 ( 1 ) :55-73.
  • 6Silven Olli, Matti Niskanen, Hannu Kauppinen. Wood inspec- tion with non-supervised clustering[ J ]. Machine Vision and Ap- plications, 2003,13 ( 5 ) : 275 - 285.
  • 7Vapnik V.The nature of statistics learning theory[M].New York:Springer Verlag,1995.
  • 8Lin C F,Wang S D.Fuzzy support vector machines[J].IEEE Transactions on Neural Netw orks,2002,13 (2):464-471.
  • 9Cristianini N,Shawe-Taylor J.An introduction to support vector machines and other kernel-based learning Methods[M].Cambridge:cambridge university press,2006.
  • 10丁海勇,卞正富.基于SVM算法和纹理特征提取的遥感图像分类[J].计算机工程与设计,2008,29(8):2131-2132. 被引量:24

引证文献4

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部