期刊文献+

基于小波域维纳滤波器的信号稀疏表示 被引量:3

Sparse Representation of Signals Based on Wavelet Domain Wiener Filtering
下载PDF
导出
摘要 经典小波分解对信号稀疏化效果不佳,为此设计了基于小波域经验维纳滤波器的稀疏表示算法.该算法可自适应地衰减每个小波系数,增大系数的稀疏度及可压缩性,从而提高压缩感知算法对信号的恢复质量.仿真结果表明,与传统的基于小波变换的信号稀疏表示及恢复算法相比,该算法较大地提升了对信号及图像的恢复质量. A wavelet-based Wiener filter is proposed for signal sparse representation since the classical wavelet transform can not posses good sparse results for real signals. The proposed method can adaptively decrease the magnitude of each wavelet coefficient so that sparsity and compressibility of the wavelet coefficients is improved. This results in improvement of recovered signal quality of the compressed sensing algorithm. Simulation results show that, compared to the original sparse representation based on wavelet transform, the proposed algorithm can significantly improve quality of recovered signals for both signals and images.
出处 《应用科学学报》 EI CAS CSCD 北大核心 2012年第6期595-600,共6页 Journal of Applied Sciences
基金 国家自然科学基金(No.61272028 No.60802045 No.61073079) 北京市自然科学基金预探索项目基金(No.4113075) 中央高校基本科研业务费专项资金(No.2009JBM028 No.2011JBM223 No.201012200110) 教育部博士点新教师基金(No.20100162120019) 北京交通大学红果园D类人才支持计划资助
关键词 稀疏表示 维纳滤波器 小波变换 正交匹配追踪算法 sparse representation, Wiener filter, wavelet transform, orthogonal matching pursuit (OMP) algorithm
  • 相关文献

参考文献16

二级参考文献111

共引文献294

同被引文献25

  • 1DONOHO D. Compressed sensing [ J]. IEEE Transac- tions on Information Theory, 2006, 52(4): 1289-1306.
  • 2CANDES E. Compressive sampling [ C ]. Proceedings of the International Congress of Mathematicians. Zurich, Switzerland: European Mathematical Society Publishing House ,2006 : 1433-1452.
  • 3CEN Yi-Gang, ZHAO Rui-Zhen, MIAO Zhen-Jiang, CEN Li-Hui, A New Approach of Conditions on δ 2s(Φ) for s- sparse Recovery, 中国科学F辑,doi:10.1007/s11432.013.4855.0.
  • 4CANDES E, ROMBERG J and TAO T. Robust uncer- tainty principles: Exact signal reconstruction from highly incomplete frequency information [ J ]. IEEE Transaction on Information Theory,2006,52 (4) : 489-509.
  • 5TROPP J A. Greed is good : Algorithmic results for sparse approximation [ J ]. IEEE Transaction on Information Theory,2004, 50(10) : 2231-2242.
  • 6TROPP J A and GILBERT A C. Signal recovery from ran- dom measurements via orthogonal matching pursuit [ J]. IEEE Transaction on Information Theory, 2007,53 ( 12 ) : 4655-4666.
  • 7NEEDELL D and VERSHYNIN D. Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit. Foundations of Computational Mathe- matics, 2009, 9(3): 317-334.
  • 8FIGUE1REDO M A T, NOWAK R D, WRIGHT S J. Gradient projec-tion for sparse reconstruction: Application to compressed sensing and other inverse problem [ J ]. Journal of Selected Topics in Signal Processing: Special Issue on Convex Optimization Methods for Signal Process- ing,2007, 1 (4) : 586-598.
  • 9GILBERT A C, STRAUSS M J, TROPP J A, and VER- SHYNIN R. Algorithmic linear dimension reduction in the norm for sparse vectors [ C ]. Proceeding of the 44th Annual Allerton Conference on Communication, Control and Computing. Monticello : Allerton, 2006 : 1-27.
  • 10MALLAT S, ZHONG S. Characterization of Signals from Muhiscale Edges[ J]. IEEE Transactions on Pattern Anal- ysis and Machine Intelligence, 1992,14(7 ) :710-732.

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部