期刊文献+

动态环境下带有非线性效应的复合粒子群优化算法 被引量:4

Composite particle swarm optimization with nonlinear effect in dynamic environment
下载PDF
导出
摘要 针对粒子群优化算法在求解动态优化问题存在多样性缺失,寻优速度慢等缺陷,借鉴物理学中的非线性复合效应,本文提出带有非线性效应的复合粒子群优化算法,该算法利用复合材料的相乘效应根据粒子的相似性,基于"最坏优先"规则将种群划分成若干复合粒子.为使种群迅速地在动态环境中找到最优解,利用复合材料的共振效应,成员粒子通过自适应异速度映射机制整合有价值信息.为提高种群的多样性,利用复合材料的诱导效应,引入复合粒子的整体运动策略.最后通过动态标准测试问题实验对相关参数设置进行了分析,并与其他几种粒子群算法相比较,验证了该算法在动态环境中的有效性. This paper presents a new particle swarm optimization model,called composite particle swarm optimization with nonlinear effect(CPSO–NE),to deal with dynamic optimization problems.CPSO–NE partitions the swarm into a set of composite particles based on their similarity using a "worst-first" principle.Inspired by the notion of the composite particle phenomenon in physics,the elementary members in each composite particle interact via a velocity-anisotropic reflection scheme to integrate valuable information for effectively and rapidly finding the promising optima in the search space.Each composite particle maintains the diversity by a scattering operator.In addition,an integral movement strategy is introduced to promote the swarm diversity.Experiments on a typical dynamic test benchmark problem provide a guideline for setting the involved parameters and show that CPSO–NE is efficient in comparison with several state-of-the-art PSO algorithms for dynamic optimization problems.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2012年第10期1253-1262,共10页 Control Theory & Applications
基金 国家自然科学基金资助项目(70931001 70771021 70721001) 国家自然科学基金创新研究群体科学基金资助项目(60521003 60821063) 国家自然科学基金青年基金资助项目(61004121 71001018)
关键词 粒子群优化 复合粒子 异速度映射 自适应步长调整 动态优化问题 particle swarm optimization(PSO) composite particle velocity-anisotropic reflection self-adaptive stepsize adjustment dynamic optimization problem
  • 相关文献

参考文献24

  • 1BLACKWELL T M, BENTLEY P J. Dynamic search with charged swarms [C] //Proceedings of the Genetic and Evolutionary Compu- tation Conference 2002. New York: Morgan Kaufmann Publishers, 2002:19 - 26.
  • 2BLACKWELL T M. Particle swarms and population diversity I: anal- ysis [J]. Soft Computing - A Fusion of Foundations, Methodologies and Applications, 2005, 9(11): 793 -802.
  • 3BLACKWELL T M, BENTLEY P J. Multiswarms, exclusion, and anti-convergence in dynamic environments [J]. IEEE Transactions on Evolutionary Computation, 2006, 10(4): 459 - 472.
  • 4BONABEAU E, DORIGO M, THERAULAZ G. Swarm Intelligence: from Natural to Artificial Systems [M]. Oxford: Oxford University Press, 1999.
  • 5BRANKE J. Memory enhanced evolutionary algorithms for chang- ing optimization problems [C] //Proceedings of the 1999 Congress on Evolutionary Computation. Washington, DC: IEEE, 1999(3): 1875 - 1882.
  • 6BRANKE J, KAUBLER T, SCHMIDTH C, et al. A multi-population approach to dynamic optimization problems [C] //Adaptive Comput- ing in Design and Manufacturing. Berlin: Springer-Verlag, 2000:299 - 308.
  • 7BRANKE J. Evolutionary Optimization in Dynamic Environments [M]. Dordrecht: Kluwer Academic Publishers, 2002.
  • 8YU E, SUGANTHAN E Evolutionary programming with ensemble of external memories for dynamic optimization [C] //Proceedings of the 2009 IEEE Congress on Evolutionary Computation. Trondheim, Norway: IEEE, 2009: 431- 438.
  • 9GREEFF M, ENGELBRECHT A E Solving dynamic multi-objective problems with vector evaluated particle swarm optimisation [C] //Proceedings of the 2008 IEEE Congress on Evolutionary Compu- tation. Hong Kong: IEEE, 2008:2917 - 2924.
  • 10刘黎黎,汪定伟.复合粒子群算法及其在动态环境中的应用[J].系统工程学报,2011,26(2):269-274. 被引量:3

二级参考文献30

  • 1单世民,邓贵仕.动态环境下一种改进的自适应微粒群算法[J].系统工程理论与实践,2006,26(3):39-44. 被引量:16
  • 2魏航,李军,蒲云.时变网络下多式联运的最短路径问题研究[J].系统工程学报,2007,22(2):205-209. 被引量:15
  • 3Hu Xiaohui, Eberhart R C. Adaptive Particle Swarm Optimization: Detection and Response to Dynamic Systems[C]//Proc. of 2001 Congress on Evolutionary Computation. Seoul, Korea: [s. n.], 2001.
  • 4Carlisle A, Dozier G Tracking Changing Extrema with Adaptive Particle Swarm Optimizer[C]//Proc. of WAC'02. Orlando, Florida, USA: [s. n.], 2002.
  • 5Blackwell T, Branke J. Multi-swarm, Exclusion, and Anticonvergence in Dynamic Environments[J]. IEEE Trans. on Evolutionary Computation, 2006, 10(4): 459-472.
  • 6Yang Shengxiang. Non-stationary Problem Optimization Using the Primal-dual Genetic Algorithm[C]//Proc. of 2003 Congress on Evolutionary Computation. Canberra, Australia: [s. n.], 2003.
  • 7de Jong K A. A Test Problem Generator for Non-stationary Environments[C]//Proc. of 1999 Congress on Evolutionary Computation. Washington D. C., USA: [s. n.], 1999.
  • 8KENNEDY J, EBERHART R C. Particle swarm optimization[C] //Proceedings of International Conference on Neural Networks. New York: IEEE, 1995: 1942- 1948.
  • 9EBERHART R C, SHI Y H. Particle swarm optimization: development, applications and resources[C]//Proceedings of the Congress on Evolutionary Computation. Piscataway: IEEE, 2001:81 - 86.
  • 10SHI Y H, EBERHART R C. Parameter selection in particle swarm optimization[C]//Proceeding of the 7th Annual Conference on Evolutionary Programming. Berlin: Springer-Verlag, 1998:591 - 600.

共引文献73

同被引文献45

  • 1KENNEDY J, EBERHART R. Particle swarm optimization[ C]// Proceedings of IEEE International Conference on Neural Networks. Piscataway: IEEE, 1995,4:1942 - 1948.
  • 2KARABOGA D, BASTURK B. A powerful and efficient algorithm for numerical function optimization: Artificial Bee Colony (ABC) algo- rithm[ J]. Journal of Global Optimization, 2007, 39(3) : 459 - 171.
  • 3BAO L, ZENG J C. Comparison and analysis of the selection in arti- ficial bee colony algorithm [ C]//Proceeding of the 9th International Conference on Hybrid Intelligent Systems. Washington, DC: IEEEComputer Society, 2009:411 - 416.
  • 4LIANG J J, QIN A K, SUGANTHAN P N, et al. Comprehensive learning particle swarm optimizer for global optimization of muhimo- dal functions[ J]. IEEE Transactions on Evolutionary Computation, 2006, 10(3) :281 -295.
  • 5SUGANTHAN P N, HANSEN N, LIANG J J, et al. Problem defi- nitions and evaluation criteria for the CEC2005 special session on realparameter optimization, KanGAL Report Number 2005005 [ R/ OL]. [2012 - 10 - 01]. http://bschw, googlecode, com/svn-his- tory/r599/tmnk/EvalCompu/Tech-Report-May-30-05, pdf.
  • 6JIAO B, LIAN Z G, GU X S. A dynamic inertia weight particle swarm optimization algorithm[ J]. Chaos Solitons & Fractals, 2008, 37(3): 698 -705.
  • 7RATSIAWEERA A, HALGAMUGE S, WATSON I-I C. Self organ- izing hierarchical particle swarm optimizer with time varying accel- eration coefficients[ J]. IEEE Transactions on Evolutionary Compu- tation, 2004, 8(3): 240-255.
  • 8SHI Y, EBERHART R C. A modified particle swarm optimizer [ C]// The 1998 IEEE International Conference on Evolutionary Computation Proceedings, IEEE World Congress on Computational Intelligence. Piscataway: IEEE Press, 1998:69 - 73.
  • 9KENNEDY J, MENDES R. Population structure and particle swarm performance [ C] //Proceeding of the 2002 Congress on E- volution Computation. Washington, DC: IEEE Computer Society, 2002:1671 - 1676.
  • 10MENDES R, KENNEDY J, NEVES J. The fully informed particle swarm: Simpler maybe better[ J]. IEEE Transactions on Evolution- ary Computation, 2004, 8(3) : 204 - 210.

引证文献4

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部