期刊文献+

Exact solutions for nonlinear partial fractional differential equations 被引量:22

Exact solutions for nonlinear partial fractional differential equations
原文传递
导出
摘要 ′In this article, we use the fractional complex transformation to convert nonlinear partial fractional differential equations to nonlinear ordinary differential equations. We use the improved (G′/G)-expansion function method to calculate the exact solutions to the time- and space-fractional derivative foam drainage equation and the time- and space-fractional derivative nonlinear KdV equation. This method is efficient and powerful for solving wide classes of nonlinear evolution fractional order equations. ′In this article, we use the fractional complex transformation to convert nonlinear partial fractional differential equations to nonlinear ordinary differential equations. We use the improved (G′/G)-expansion function method to calculate the exact solutions to the time- and space-fractional derivative foam drainage equation and the time- and space-fractional derivative nonlinear KdV equation. This method is efficient and powerful for solving wide classes of nonlinear evolution fractional order equations.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第11期32-38,共7页 中国物理B(英文版)
关键词 fractional calculus complex transformation modified Riemann-Liouville derivative im- proved (G′/G)-expansion function method fractional calculus, complex transformation, modified Riemann-Liouville derivative, im- proved (G′/G)-expansion function method
  • 相关文献

参考文献30

  • 1Podlubny I 1999 Fractional Differentietl Equations (San Diego: Academic Press).
  • 2He J H 2004 Bull. Sci. Technol. 15 86.
  • 3Diethelm K and LuchkoY 2008 J. Comput. Anal. Appl. 6 243.
  • 4Erturk V S, Momani S and Odibat Z 2008 Commun. Non- linear Sci. Numer. Simulat. 13 1642.
  • 5Daftardar-Gejji V and Bhalekar S 2008 Appl. Math. Corn- put. 202 113.
  • 6Daftardar-Gejji V and Jafari H 2007 Appl. Math. Comput 189 541.
  • 7Sweilam N H, Khader M M and A1-Bar R F 2007 Phys. Left. A 371 26.
  • 8Golbabai A and Sayevand K 2011 Comput. Math. Appli- cation 61 2227.
  • 9Golbabai A and Sayevand K 2010 Nonlinear Science Left. A 1 147.
  • 10Gepreel K A 2011 Applied Math. Lett. 24 1428.

同被引文献90

引证文献22

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部