期刊文献+

广义Chaplygin气体Euler方程组的Riemann问题

Riemann Problem of Euler Equations for Generalized Chaplygin Gas
下载PDF
导出
摘要 研究了一维广义Chaplygin气体Euler方程组的Riemann问题.利用特征分析方法,得到了Riemann问题解的存在性和唯一性.和多方气体不同的是,广义Chaplygin气体Euler方程组会出现质量集中的解. This paper is concerned with the Riemann problem of Euler equations for one-dimensional generalized Chaplygin gas. Using characteristic analysis, we get the existence and uniqueness of the Pdemann solutions. Different from the polytropic gas, the Euler equations for generalized Chaplygin Gas appear the mass concentration solution.
作者 张莹 郭俐辉
出处 《新疆大学学报(自然科学版)》 CAS 2012年第4期426-430,436,共6页 Journal of Xinjiang University(Natural Science Edition)
基金 国家自然科学基金(11101348) 高校科研计划青年教师科研启动基金(XJEDU2011S02) 新疆大学博士启动基金(BS100105和BS090107)
关键词 广义Chaplygin气体 RIEMANN问题 激波 疏散波 质量集中 generalized Chaplygin gas Riemann problem shock wave rarefaction wave mass concentra- tion
  • 相关文献

参考文献11

  • 1Chaplygin Sergey. On gas jets[J]. Sci Mem Moscow Univ Math Phy, 1904,21: 1-121.
  • 2Tsien Hsue-shen. Two dimensional subsonic flow of compressible fluids [J]. J Aeron Sci, 1939,6: 399-407.
  • 3Theodore von Kaxman. Compressibility effects in aerodynamics[J]. J Aeron Sci, 1941, 8: 337-365.
  • 4Xu Xiaodong, He Jianhua, Wang Bin. Breaking parameter degeneracy in interacting dark energy models from observa-tions[J]. Phys Lett B,2011,27: 513-519 .
  • 5杨秀一,吴亚波.关于宇宙加速膨胀及可变的广义Chaplygin气体模型的理论研究[J].辽宁:辽宁师范大学.2007.
  • 6Brenier Yann. Solutions with concentration to the Riemann problem for one-dimensional Chaplygin gas equations[J). JMath Fluid Mach, 2005, 7: S326-S331.
  • 7Serre Denis. Multidimensional shock interaction for a Chaplygin gas[J]. Anal, 2009, 191: 539-577.
  • 8Guo Lihui, Sheng Wancheng, Zhang Tong. The two-dimensional Riemann problem for isentropic Chaplygin gas dynamicsystem[J]. Communications on Pure and Applied Analysis, 2010,2(9): 431 - 458.
  • 9Chang Tung, Hsiao Ling. The Riemann Problem and Interaction of Waves in Gas Dynamics [A]. In: John Wiley and Sons.Pitman Monographs and Surveys in Pure and Applied Mathematics No. 41 [C]. United States: New York NY (US), 1989.
  • 10Sheng Wancheng. Two-Dimensional Riemann Problem for Scalar Conservation Laws[J]. J Differential Equations, 2002, 183:239-261.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部