期刊文献+

基于特征分析的微博用户兴趣发现算法 被引量:8

Feature analysis based on Weibo user interest detection algorithm
下载PDF
导出
摘要 本文在综合兴趣模型研究现状的基础上,结合微博数据集对微博用户的特征进行分析,建立微博用户兴趣模型,并提出基于微博用户兴趣模型的发现算法。实验结果表明,本文提出的算法能很好的发现微博用户的兴趣,提高推荐系统的质量。 Based on the research of user interest model, the feature of weibo user will be analyzed according to the weibo data collection, detection algorithm of weibo user interest model will be proposed. Experimental results indicate the algorithm we proposed performs better in detecting weibo user interest and enhances the quality of the recommendation system.
出处 《电信工程技术与标准化》 2012年第11期79-83,共5页 Telecom Engineering Technics and Standardization
基金 国家自然科学基金(No.61072057 61101119 61121001 61271019 60902051) 长江学者和创新团队发展计划资助(No.IRT1049) 国家科技重大专项(No.2011ZX03002-001-01 移动互联网总体架构研究)
关键词 微博 兴趣模型 特征分析 推荐系统 协同过滤 weibo interest model feature analysis recommender system collaborative filtering
  • 相关文献

参考文献6

二级参考文献84

  • 1宋丽哲,牛振东,宋瀚涛,余正涛,师雪霖.数字图书馆个性化服务用户模型研究[J].北京理工大学学报,2005,25(1):58-62. 被引量:45
  • 2邢春晓,高凤荣,战思南,周立柱.适应用户兴趣变化的协同过滤推荐算法[J].计算机研究与发展,2007,44(2):296-301. 被引量:148
  • 3Shardanand U,Maes P.Social information filtering:algorithms for automating "word of mouth"[C]//Proceedings of ACM CHI'95 Conference on Human Factors in Computing Systems.New York:ACM Press,1995,210-217.
  • 4Herlocker J,Konstan J A,Terveen L,et al.Evaluating collaborative filtering recommender systems[J].ACM Transactions on Information Systems,2004,22(1):5-53.
  • 5Geyer-Schulz A,Hahsler M,Wien W,et al.Evaluation of recommender algorithms for an internet information broker based on simple association rules and on the repeat-buying theory[DB/OL].[2008-10-12].http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.19.911.
  • 6Dahlen B J,Konstan J A,Herlocker J L,et al.Jumpstarting movielens:user benefits of starting a collaborative filtering system with "dead data"[DB/OL].[2008-10-12].http://www.bibsonomy.org/bibtex/24433e6aa3be2cdad117bfb5fd7a757a1/bsmyth.
  • 7Breese J S,Heckerman D,Kadie C.Empirical analysis of predictive algorithms for collaborative filtering[DB/OL].[2008-10-12].http://www.cs.pitt.edu/-mrotaru/comp/rs/Breese%20UAI%201998.pdf.
  • 8Herlocker J L,Konstan J A,Borchers A,et al.An algorithmic framework for performing collaborative filtering[C]// Hearst M A,Gey F F,Tong R.Proceedings of the 22nd International Conference on Research and Development in Information Retrieval (SIGIR'99) (Aug).New York:ACM Press,1999:230-237.
  • 9Billsus D,Pazzani M J.Learning collaborative information filters[C]// Rich C,Mostow J.Proceedings of the 15th National Conference on Artificial Intelligence (AAAI-1998).Menlo Park,Calif:AAAI Press,1998:46-53.
  • 10Basu C,Hirsh H,Cohen W W.Recommendation as classification:using social and content-based information in recommendation[C]// Rich C,Mostow J.Proceedings of the 15th National Conference on Artificial Intelligence (AAAI-1998).Menlo Park,Calif:AAAI Press,1998:714-720.

共引文献186

同被引文献93

引证文献8

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部