摘要
提出一种柴油机选择催化还原(SCR)催化器载体结构参数优化的设计方法,根据车用柴油机排量,将SCR催化器载体分为4类,选取载体体积、长度、目数、壁厚和涂层厚5个结构参数为设计变量,以高NOx转化率及低压力损失为优化目标,利用拉丁超立方实验设计选择样本点进行数值模拟,在构建的Kriging近似模型基础上,对载体结构参数采用改进的非支配排序遗传算法NSGA-II(non-dominated sorting genetic algorithm-Ⅱ)进行优化设计。结果表明:Kriging近似模型的拟合精度较高,结合NSGA-II算法对SCR催化器载体结构参数进行优化是可行的、有效的,不同排量下的优化结果均能够较好地满足设计要求。
The optimal design method of structural parameters for diesel urea-SCR was proposed. Accord- ing to the differences of diesel engine displacement, the urea-selective catalytic reactor can be divided into four subclasses. Taking high conversion ratio of NO and small pressure loss as the optimization goal, with monolith volume, length,cell per square inch,wall thickness and washcoat thickness as design variables, Latin Hypercube method was used to carry out sampling of parameters. The obtained samples were analyzed with numerical simula- tion. On this basis, the optimization was solved by NSGA-Ⅱ (non-dominated sorting genetic algorithm-Ⅱ ) , using Kriging model as the approximate model. The results show that the Kriging model has high fitting accuracy,dem- onstrate the efficiency and applicability of the optimal design method. The optimization results of different diesel engine displacement show that the method can obtain structural parameters which meet design requirements.
出处
《环境工程学报》
CAS
CSCD
北大核心
2012年第12期4573-4578,共6页
Chinese Journal of Environmental Engineering
基金
国家自然科学基金资助项目(51276056
51176045)
湖南省自然科学基金资助项目(10JJ6080)
湖南大学汽车车身先进设计制造国家重点实验室自主课题(61075002)