期刊文献+

基于K-L特征提取与支持向量机的油浸式变压器故障诊断模型研究

Study of Fault Diagnosis Model for Oil-immersed Transformer Based on K-L Feature Extraction and SVM
下载PDF
导出
摘要 针对变压器多故障问题,提出了基于Mercer核函数的欧式距离查询策略算法,并建立了基于Karhunen-Loeve(K-L)特征提取与支持向量机的变压器故障诊断模型,利用K-L变换提取信号的特征值,最后通过支持向量机学习算法完成对信号的选择与分类。通过实例应用表明:所训练的SVM分类器较之直接任意选取训练样本作为训练集的传统方法具有更高的诊断率。 Aiming at the multi - fault problems of transformer, the Euclidian distance query algorithm based on Mercer kernel function is proposed and a model based on Karhunen - Loeve ( K - L) feature extracting and support vector machine (SVM) is established for fault diagnosis of oil - immersed transformer, the eigenvalue of signal is extracted using K - L transform, and finally, the SVM learning algorithm is introduced to select and classify the training sample data. The result shows that the precision of the trained SVM classifier is better than that of the traditional method, and the reliability and effectiveness using the above mentioned method are satisfied in fault diagnosis.
作者 方飚
出处 《四川电力技术》 2012年第6期58-61,共4页 Sichuan Electric Power Technology
关键词 油浸变压器 故障诊断 支持向量机 K—L特征提取 oil - immersed transformer fault diagnosis support vector machine K - L feature extracting
  • 相关文献

参考文献10

  • 1DL/T596-1996.电力设备预防性试验规程[S].[S].,..
  • 2Warmuth M K, Liao J, Ratsch G et al. Active Learning with Support Vector Machines in the Drug Discovery Process [ J]. Journal of Chemical Information and Computer Sciences, 2003, 43 (2) : 667 - 673.
  • 3Hsu C W, Chang C C, Lin C J. A Practical Guide to Support Vector Classification [ Z ]. 2003 - 07. http ://www. csie. ntu. edu. tw/cjlin/papers/guide/guide. pdf.
  • 4Wang Liguo, Zhang Ye, GU Yanfeng. The Research of Simplification of Support of Structure of Multi - class Classifier Vector Machine [ J ]. Journal of Image and Graphics, 2005,10 (5) : 572 - 574.
  • 5Cortes C, Vapnik V. Support Vector Networks [ J ]. Machine Learning, 1995, 20(1 ) : 273 - 297.
  • 6肖建华.智能模式识别方法[M].广州:华南理工大学出版社,2006.
  • 7Wilson D R,Tony R M. Improved Heterogeneous Distance Functions [ J ]. Journal of Artificial Intelligence Research, 1997, 6(1) : 1 -34.
  • 8段丹青,陈松乔,杨卫平.基于SVM主动学习的入侵检测系统[J].计算机工程,2007,33(1):153-155. 被引量:19
  • 9Vapnik V. An Overview of Statistical Learning Theory [J]. IEEE Transactions on Neural Networks, 1999, 10 (5) : 988 - 999.
  • 10崔江,王友仁.基于聚类预处理和支持向量机的模拟电路故障诊断技术[J].计算机应用,2006,26(8):1977-1979. 被引量:2

二级参考文献11

  • 1NelloC JohnS-Taylor 李国政 王猛 曾华军 译.支持向量机导论[M].北京:电子工业出版社,2004..
  • 2SAVIR J,GUO Z.On the Detectability of Parametric Faults in Analog Circuits[A].Proceedings of the 2002 IEEE International Conference on Computer Design[C].2002.
  • 3LIU Q,YU X,FENG Q.Fault Diagnosis Using Wavelet Neural Networks[A].Neural Processing[C].2003.115-123.
  • 4黄席樾,张著洪,何传江,等.现代智能算法两类及应用[M].北京:科学出版社,2005.
  • 5VAPNIK V.The Nature of Statistical Learning Theory[M].N.Y.:Springer,1995.
  • 6EL-YAZEED MFA,MOHSEN AAK.A Preprocessor for Analog Circuit Fault Diagnosis Based on Prony's Method[J].AEU international journal of electronics and communications,2003,57(1):16-22.
  • 7VapnikVN.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 8Warmuth M K,Liao J,Ratsch G,et al.Active Learning with Support Vector Machines in the Drug Discovery Process[J].Journal of Chemical Information and Computer Sciences,2003,43(2):667-673.
  • 9Hsu C W,Chang C C,Lin C J.A Practical Guide to Support Vector Classification[Z].2003-07.http://www.csie.ntu.edu.tw(Γ) cjlin /papers/guide/guide.pdf.
  • 10Wilson D R,Tony R M.Improved Heterogeneous Distance Functions[J].Journal of Artificial Intelligence Research,1997,6(1):1-34.

共引文献339

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部