期刊文献+

基于二维稀疏采样的HRRP合成及ISAR成像方法 被引量:2

HRRP Synthesizing and ISAR Imaging Method Based on Two Dimension Sparse Sampling
下载PDF
导出
摘要 在分析传统的线性调频(LFM)信号体制ISAR高分辨距离像(HRRP)合成及二维成像原理的基础上,结合压缩感知理论,提出了一种基于二维稀疏采样的高分辨距离像合成及ISAR成像方法。该方法对经过二维稀疏采样后的ISAR回波信号进行二维重构处理,在大幅降低LFM信号采样率、减少子脉冲个数的前提下,获得高质量的HRRP和二维ISAR像;为缓解数字信号处理机的采样负担、降低已方雷达信号的被截获概率奠定了基础。仿真实验证明了该方法的有效性和可行性,同时观察了其鲁棒性。 Sparse microwave imaging technique is very important in the field of the microwave imaging. On the basis of analysis of conventional high resolution range profile (HRRP) synthesizing and ISAR imaging theory with linear frequency modulation (LFM) signal, a new method of sparse processing based on Compressed Sensing (CS) is proposed in the paper. In the method, the high quality HRRP and ISAR image can be achieved by using the two dimension reconstruction with ISAR data after two dimension sparse sampling, on the condition of apparently reducing the sampling rate and pulse number. The sampling burden of digital signal processor and the captured probability of radar signal would be diminished by using the method. The feasibility and effectiveness of the method are verified and robustness of the method is examined via simulation results.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2012年第6期847-852,共6页 Journal of University of Electronic Science and Technology of China
基金 国家973项目(2010CB731905)
关键词 压缩感知 高分辨距离像 逆合成孔径雷达 目标二维像 二维稀疏采样 compressed sensing high resolution range profile ISAR two dimension image of target two dimension sparse sampling
  • 相关文献

参考文献19

  • 1DONOHO D L. Compressed sensing[J]. IEEE Trans Information Theory, 2006, 52(4): 1289-1306.
  • 2CANDES E J, WAKIN M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 21-30.
  • 3石光明,刘丹华,高大化,刘哲,林杰,王良君.压缩感知理论及其研究进展[J].电子学报,2009,37(5):1070-1081. 被引量:711
  • 4VARSHNEY K R, CETIN M, FISHER J W, ct al. Sparse representation in structured dictionaries with application to synthetic aperture radar[J], IEEE Trans Signal Processing, 2008, 56(8): 3548-3561.
  • 5HERMAN M A, STROHMER T. High-resolution radar via compressed sensing[J]. IEEE Transactions on Signal Processing, 2009, 57(6): 2275-2284.
  • 6TELLO A M, LOPEZ-DEKKER P, MALLORQUI J J. A novel strategy for radar imaging based on Compressive Sensing [J]. IEEE Transactions on Gcnscicnce and Remote Sensing, 2010,48(12): 4285-4295.
  • 7BARANIUK R, STEEGHS P. Compressive radar imaging[C] //IEEE Radar Conference. Waltham, Massachusetts: IEEE, 2007.
  • 8CETIN M, MOSES R, L. SAR imaging from partial. aperture data with frequency-band omissions[J]. Proceedings of SPIE, 2005(5808): 32-43.
  • 9BHATTACHARYA S, BLUMENSATH T, MULGREW B, et al. Fast encoding of synthetic aperture radar raw data using compressed sensing [C]//IEEE Workshop on Statistical Signal Processing. Madison, USA: IEEE, 2007: 448-452.
  • 10YOON Y S, AMIN M G Compressed sensing technique for high-resolution radar imaging[J]. Proceedings of SPIE, 2008, 6968(1A): 1-10.

二级参考文献124

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 3Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 4Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 5E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
  • 6E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
  • 7Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.
  • 8G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91.
  • 9V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09.
  • 10S Mallat,Z Zhang.Matching pursuits with time-frequency dictionaries[J].IEEE Trans Signal Process,1993,41(12):3397-3415.

共引文献776

同被引文献12

引证文献2

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部