期刊文献+

基于动态PCA的核动力装置传感器故障检测 被引量:3

Sensor Fault Detection for Nuclear Power Plant Based on Dynamic Principal Component Analysis
下载PDF
导出
摘要 针对变工况过程中传统主元分析方法的模型不适应问题,通过稳定性因子分析,剔除过渡过程数据,并用模糊聚类方法将不同稳态工况进行分类,利用动态主元模型方法根据工况类型建立不同的主元模型,并将该方法用于核动力装置传感器的故障检测,结果表明该方法能够适应变工况情况下的传感器故障检测,减少了故障的误检,并提高了检测灵敏度. As to the maladjustment of model of traditional principal component analysis in changing condition process, different principal component models have been built by dynamic principal compo- nent analysis according to condition type, through stability factor analysis to eliminate the changing process data and condition classification of different steady conditions with the fuzzy-clustering meth- od. This method is applied to sensor fault detection for nuclear power plant . The result shows that it is fit for sensor fault detection in changing condition process, it reduces the chances of detection mis- takes and it improves the detection sensitivity.
作者 宋梅村 蔡琦
出处 《武汉理工大学学报(交通科学与工程版)》 2012年第6期1184-1187,1191,共5页 Journal of Wuhan University of Technology(Transportation Science & Engineering)
关键词 主元分析 变工况过程 稳定性因子 模糊聚类 故障检测 principal component analysis changing condition process stability factor fuzzy-clustering fault detection
  • 相关文献

参考文献7

二级参考文献19

共引文献55

同被引文献31

引证文献3

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部