期刊文献+

改进的BP神经网络预测模型及其应用 被引量:12

Prediction Model of Improved BP Neural Network Its Application
下载PDF
导出
摘要 针对传统BP神经网络算法在对预测问题中存在的网络具有易陷入局部极小、收敛速度慢的缺陷,引入附加动量法和自适应学习速率法改进BP神经网络预测模型.将改进后的预测方法应用于企业的市场需求预测问题,以某汽车制造企业过去12个月汽车销售量的实际数据为样本,分别采用基于时间序列和基于因素分析两种预测模型,对所提出的改进预测方法进行实证分析.结果表明:所提出的算法对销售量的预测精度较高,误差均小于8.8%,运算时间也有所降低,预测结果表明文中所提出的算法在处理网络易陷入局部极小、收敛速度慢的预测问题方面的有效性. The paper adopts the additional momentum method and adaptive learning rate method to im- prove the traditional BP algorithm with the defect to easily fall into local minima and slow convergence The improved predicting model was applied in the forecasting of market demand. Based on the actual date of auto sales of an automobile manufacturing companies from the past i2 months, two prediction models on based on time series and factor analysis are adopted respectively, and improved prediction methods for empirical analysis. Research results show that the prediction accuracy of the proposed al- gorithm is higher, the error is less than 8.8%, and the computing time is decreased. Forecasting re- sults prove the presented algorithm is effective to solve the prediction problems of network easily into the local minimum and slow convergence speed.
作者 朱英
出处 《武汉理工大学学报(交通科学与工程版)》 2012年第6期1252-1255,共4页 Journal of Wuhan University of Technology(Transportation Science & Engineering)
关键词 附加动量法 需求预测 改进的BP神经网络 时间序列 additional momentum method demand prediction improved BP neural network time serial
  • 相关文献

参考文献8

  • 1ZHU Ying. Study on the model of demand forecasting based on artificial neural network[C]//The 9th International Symposium on Distributed Computing and Applications to Business, Engineering and Sci- ence. Hong Kong, 2010:382-386.
  • 2AL-BULUSHI N I,KING P R,BLUNT M J. Kraaijveld artificial neural networks workflow and its ap- plication in the petroleum industry[J]. Neural Cornput& Applic,2012,21:409-421.
  • 3CAN B, HEAVEY C. A comparison of genetic programming and artificial neural networks in metamod-eling of discrete-event simulation models[J]. Computers & Operations Research, 2012,39 : 424-436.
  • 4SATTARIA M T, YUREKLI K, PAL M. Performance evaluation of artificial neural network approaches in forecasting reservoir inflow [J]. Applied Mathematical Modelling, 2012,36: 2649-2657.
  • 5JEONGKS, KIMBDK, JUNGCJM, etal. Nonlinear autoregressive modelling by temporal recurrent neural networks for the prediction of freshwater phytoplankton dynamics [J]. Ecol. Model, 2008, 211: 292-300.
  • 6CONEJO A J, PLAZAS M A, ESPINOLA R, et al. Day-ahead eleetricity price forecasting using the wavelet transform and ARIMA modesl [J]. IEEE Trans Power System, 2005, 20(2) : 1035-1042.
  • 7VELTEN K,REINICKE R, FRIEDRICH K, Wear volume predietionwith artificialneuralnetworks [J]. Tribology International, 2000,33 : 731.
  • 8李彦斌,李存斌,宋晓华.改进的人工智能神经网络预测模型及其应用[J].中南大学学报(自然科学版),2008,39(5):1054-1058. 被引量:11

二级参考文献13

  • 1刘玲,严登俊,龚灯才,张红梅,李大鹏.基于粒子群模糊神经网络的短期电力负荷预测[J].电力系统及其自动化学报,2006,18(3):47-50. 被引量:27
  • 2阎平凡,张长水.人工神经网络与模拟进化计算[M].北京:清华大学出版社.2006.
  • 3Ho K L, Hsu Y Y, Yang C C. Short-term load forecasting using a multilayer neural network with an adaptive learning algorithm[J]. IEEE Trans on Power Systems, 1992, 7(1): 141-148.
  • 4Conejo A J, Plazas M A, Espinola R, et al. Day-ahead electricity price forecasting using the wavelet transform and ARIMA modes 1[J]. IEEE Trans Power System, 2005, 20(2): 1035-1042.
  • 5Park D C, El-Sharkawi M A, Marks R J, et al. Electric load forecasting using an artificial neural network[J]. IEEE Trans on Power Systems, 1991, 6(2): 442-449.
  • 6Lee K Y, Cha Y T, Park J H. Short term load forecasting using an artificial neural network[J]. IEEE Trans on Power Systems, 1992, 7(1): 124-132.
  • 7Van Den Bergh F, Engelbrecht A P. A cooperative approach to particle swarm optimization evolutionary computation[J]. IEEE Transactions on Evolutionary Computation, 2004, 8(3): 225-239.
  • 8Gen M, Yun Y S. Soft computing approach for reliability optimization: State-of-the-art survey[J]. Reliability Engineering & System Safety, 2006, 91(9): 1008-1026.
  • 9HE Qie, WANG Ling. An effective co-evolutionary particle swarm optimization for constrained engineering design problems[J]. Engineering Applications of Artificial Intelligence, 2007, 20(1): 89-99.
  • 10CLERC M, KENNEDY J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(1): 58-73.

共引文献10

同被引文献73

引证文献12

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部