期刊文献+

基于解耦设计的多变量IGPC控制方法的研究与应用 被引量:1

A Better Multivariable Implicit Generalized Predictive Control (IGPC) Based on Decoupling Design
下载PDF
导出
摘要 针对多变量工业过程中存在的耦合性、建模困难以及不确定性的控制难点,论文研究了基于解耦设计的多变量隐式广义预测控制。该方法利用加权最小二乘递推方法根据输入输出数据直接辨识系统参数,这样就降低了控制器设计的复杂性;采用分散设计的方式来降低各通道间的关联关系。论文利用基于最小二乘方法,根据输入输出数据来建立被控对象的数学模型,并在此基础上对控制方法进行了仿真分析与试验研究,结果表明该方法具有良好的控制效果。 To address the control problems of multivariable industrial system with coupling and nonlinearities, we present our IGPC method for dealing with them. Sections 1 and 2 of the full paper explain our IGPC method, which we believe is better than existing ones. The core of sections 1 and 2 consists of: ( 1 ) according to input and output data, the parameters of optimal control law can be identified through use of least squares approximation ; (2) using decentralized objective function, we apply the decoupling IGPC to control a multivariable system; (3) recursive weighted least squares (RWLS) method is used to establish the mathematic model of system. Simulation and exper- imental results, presented respectively in Fig. 1 and Fig. 2, and their analysis show preliminarily that our IGPC method is indeed better than previous ones.
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2012年第6期936-940,共5页 Journal of Northwestern Polytechnical University
关键词 多变量系统 解耦设计 隐式广义预测控制 系统辨识 温度控制 computer simulation, design, experiments, identification (control systems), least squares approxima-tions, mathematical models, multivariable systems, nonlinear systems, optimization, parameter ex-traction, temperature control decoupling, implicit generalized predictive control(IGPC)
  • 相关文献

参考文献8

  • 1[1]王树青.工业过程控制工程[M].北京:化学工业出版社.2004.128-130.
  • 2王东风,李遵基,宋之平.基于参数自整定的再热汽温解耦预测控制[J].华北电力大学学报(自然科学版),2001,28(2):34-39. 被引量:2
  • 3Chen Bing, Liu Xiaoping. Fuzzy Approximate Disturbance Decoupling of MIMO Nonlinear Systems by Backstepping Approach. Fuzzy Sets and Systems, 2007, 158(10) : 1097-1125.
  • 4Emb I, Rucu M, Fontes C. Muhirate Multivariable Generalized Predictive Control and Its Application to a Slurry Reactor for Ethylene Polymerization. Chemical Engineering Science, 2006, 61 : 5754-5767.
  • 5王永初.解耦控制系统[M].成都:四川科技出版社,1986.251-272.
  • 6Wang Yonggang, Chai Tianyou, Fu Jun, Sun Jing. Adaptive Decoupling Control of the Forced-Circulation Evaporation System Using Neural Networks and Multiple Models. Proceedings of the 2011 American Control Conference, 2011, 5061-5066.
  • 7于开平,董好志.基于前向神经网络的时变非线性结构系统辨识快速递推最小二乘法[J].振动工程学报,2007,20(5):468-472. 被引量:8
  • 8朱义勇,姚富强,王厚生,李永贵,朱勇刚.一种优化的自适应总体最小二乘系统辨识算法[J].系统仿真学报,2008,20(18):4843-4846. 被引量:8

二级参考文献20

  • 1孔祥玉,魏瑞轩,韩崇昭,马红光.一种稳定的总体最小二乘自适应滤波算法[J].西安交通大学学报,2004,38(8):831-834. 被引量:7
  • 2于开平,邹经湘,庞世伟.结构系统模态参数识别方法研究进展[J].世界科技研究与发展,2005,27(6):22-30. 被引量:18
  • 3罗小东,贾振红,王强.一种新的变步长LMS自适应滤波算法[J].电子学报,2006,34(6):1123-1126. 被引量:127
  • 4陆会明.模型参考自适应预估控制及其在火电厂中的应用[M].北京:华北电力大学(北京)动力工程系,1996..
  • 5Apostolikas G, Tzafestas S. On-line RBFNN based identification of rapidly time-varying nonlinear systems with optimal structures-adaptation [J]. Mathematics and Computers in Simulation, 2003,63(1):1--13.
  • 6Hachino Tomohiro, Takata Hitoshi. On-line identification of continuous-time nonlinear systems using radial basis function networks and immune algorithm [A]. Proceedings of the 5th International Conference on Control and Automation[C]. ICCA'05, 2005: 587--592.
  • 7Zhang Youmin. A fast and numerically robust neural network training algorithm[A]. Artificial Intelligence and Soft Computing-ICAISC 2006-8th International Conference[C]. Proceedings, 2006:160--169.
  • 8Alessio Titti, Stefano Squartini, Francesco Piazza. A new time-variant neural based approach for nonstationary and non-linear system identification circuits and systems[A]. ISCAS 2005. IEEE International Symposium[C], 2005,5:5 134--5 137.
  • 9Roy R, Kailath T. ESPRIT-estimation of signal parameters via rotational invariance techniques [J]. IEEE Trans. On ASSP (S0096-3518), 1989, 37(7): 984-995.
  • 10Muhlich M, Mester R. The Role of Total Least Squares in Motion Analysis [C]// Proceedings of 5th European conference on Computer Vision, ECCV'98. Germany: Springer Verlag, 1998: 305-321.

共引文献20

同被引文献13

引证文献1

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部