期刊文献+

结合区域分割的SIFT图像匹配方法 被引量:32

Image Matching Algorithm Combining SIFT with Region Segmentation
下载PDF
导出
摘要 针对待配准图在参考图上存在多个相似的区域,传统的SIFT算法导致匹配点数量较少,影响对模型变换参数估计的情况,提出了结合区域分割的SIFT方法。与原始算法相比,该算法可以得到更多正确的匹配点对,时效性上更优。实验结果表明,该算法比原算法的正确匹配点对提高了近30倍,结合区域分割的特征匹配,剔除了90%以上的误匹配点对,改进后的算法时间性能上也更优。 Aiming at solving the situation that the original SIFT algorithm can only get few number of matching points if there are a few regions similar to the matching image on the reference image,which will affect the estimation of parameters in the transformation model,this paper proposed a method combining SIFT with region segmentation.Compared to the original method,our method can obtain much more correct matching points,and is less time consuming.The experiments demonstrate that our method can acquire nearly 30 times more correct matching points than the original one.Combining region segmentation with the original SIFT feature matching,this method can eliminate at least 90% of the erroneous matching points,besides the improved algorithm can lower the computational burden.
出处 《液晶与显示》 CAS CSCD 北大核心 2012年第6期827-831,共5页 Chinese Journal of Liquid Crystals and Displays
基金 吉林省科技厅重点项目(No.20100310)
关键词 图像配准 区域分割 SIFT 特征提取 特征匹配 image matching region segmentation SIFT feature detection feature matching
  • 相关文献

参考文献12

  • 1倪国强,刘琼.多源图像配准技术分析与展望[J].光电工程,2004,31(9):1-6. 被引量:83
  • 2Tuyte T, Mikolajczyk K. Local Invariant Feature Detectors : A Survey. Foundations and Trends in Computer Graphics and Vision [M]. Delft, Netherlands:Now Publishers Inc., 2008.
  • 3Lowe D G. Distinctive image features from scale-invariant keypoints [J]. International Journal of Computer vision, 2004, 60(2), 91-110.
  • 4Ke Y, Sukthankar R. PCA SIFT: a more distinctive representation for local image descriptors [C} //Proc. Conf. Computer Vision and Pattern Recognition, Waskington, USA:IEEE, 2004: 511-517.
  • 5Mikolajczyk K, Schmid C. A performance evaluation of local descriptors [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, (27) : 1615-1630.
  • 6Herbert I3, Tinne T, Luc V (2-. SURF: speeded up robust features [J]. Computer Vision and Image Understanding, 2008, 110(3): 346-359.
  • 7李英,李静宇,徐正平.结合SURF与聚类分析方法实现运动目标的快速跟踪[J].液晶与显示,2011,26(4):544-550. 被引量:20
  • 8孙辉,马天玮.基于相位相关的目标图像亚像元运动参数估计[J].液晶与显示,2011,26(6):858-862. 被引量:7
  • 9Koenderink J. The structure of image [J]. Biological Cybernetics, 1984, 50:363-396.
  • 10Lindeberg T. Scale-space for discrete signals [J]. IEEE Transaction PAMI, 1980, 207:187-207.

二级参考文献59

  • 1吴元昊,于前洋.基于傅里叶相位差的抗噪声位移估计算法[J].光学精密工程,2007,15(7):1137-1142. 被引量:7
  • 2桂志国,韩焱.相位相关配准法及其在射线图像数字减影中的应用[J].仪器仪表学报,2004,25(4):520-522. 被引量:11
  • 3冯林,管慧娟,滕弘飞.基于互信息的医学图像配准技术研究进展[J].生物医学工程学杂志,2005,22(5):1078-1081. 被引量:19
  • 4Lindeberg T. Feature detection with automatic scale selection [J]. International Journal of Computer Vision, 1998, 30(2):79-1162.
  • 5Lowe D G. Distinctive image features from scale-invariant keypoints [J]. International Journal of Computer Vision (IJCV), 2004, 60(2) :91-110.
  • 6Bay H, Tuytelaars T, Van Cool L. SURF: Speeded up robust features [C]//European Conference on .Computer Vision(ECCV), Graz Austria:TUG and Univercity of Ljubljana, 2006, 3951: 404-417.
  • 7Bay H, Tuytelaars T; Van Cool L. Speeded-up robust features(SURF) [J]. Computer Vision and Image Understanding, 2008, 110(3): 346-359.
  • 8Neto H V, Nehmzow U. Automated exploration and inspection: Comparing two visual novelty detectors [J]. International Journal of Advanced Robotic Systems, 2005,2 (4) : 355-362.
  • 9Luo J, Oubong G. A comparison of SIFT, PCA-SIFT and SURF [J]. International Journal of Image Processing, 2009,3(4) : 143-152.
  • 10Lowe D. Distinctive image features from scale-invariant keypoints[J]. Int'l J Computer Vision, 2004, 2(60): 91-110.

共引文献121

同被引文献318

引证文献32

二级引证文献340

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部