期刊文献+

一种改进的最大频繁项集挖掘算法 被引量:2

AN IMPROVED ALGORITHM FOR MINING MAXIMUM FREQUENT ITEM SETS
下载PDF
导出
摘要 研究基于条件模式基排序的最大频繁项集挖掘算法。通常在基于FP-tree(frequent pattern tree)的最大频繁项集挖掘算法中,影响执行效率的主要是递归和超集检测。因此提出了改进的最大频繁项集挖掘算法S-FP-MFI(sorted frequent pattern tree for maximal frequent item set),根据条件模式基含有的项目数对条件模式基进行动态排序,以减少递归次数;另外基于MFI-tree(maximalfrequent item tree)的投影策略减少了超集检测时间。实验表明S-FP-MFI算法在支持度较小的情况下,具有优越性。 An algorithm of mining maximal frequent item sets based on conditional pattern base sorting is studied. In general, the main factors affecting the execution efficiency of maximal frequent item sets mining algorithms based on FP-tree ( frequent pattern tree) are the recursion and superset checking. Therefore this paper proposes an improved maximal frequent item sets mining algorithm S-FP-MFI ( sorted frequent pattern tree for maximal frequent item set). According to the number of items of conditional pattern base, this algorithm sorts conditional pattern base in order to reduce recursion times, and the projection strategy adopting MFI-tree (maximal frequent item tree) also reduces the superset checking time as well. Experimental results testify the predominance of the proposed algorithm in condition of low support threshold.
出处 《计算机应用与软件》 CSCD 北大核心 2012年第12期186-188,共3页 Computer Applications and Software
关键词 递归 最大频繁项集 频繁模式树 条件模式基 超集检测 Recursive Maximal frequent item set Frequent pattern tree Conditional pattern base Superset checking
  • 相关文献

参考文献10

  • 1Agrawalr,Im Iell Inski T,Swam I A.Mining association rules betweensets of items in large databases[C]//Proc of ACM S IGMOD Interna-tional Conference on Management of Data,1993:207-216.
  • 2Agrawal R,Srikant R.Fast algorithms for mining association,rules[C]//Proc of the 20th International Conference on Very Large Database,1994:478-499.
  • 3Han,Pei J,Yin Y.Mining Frequent Patterns without Candidate Genera-tion:A Frequent-Pattern Tree Approach Mining Frequent Patterns with-out Candidate Generation[J].Data Mining and Knowledge Discovery,2004:53-87.
  • 4Bayardo R.Efficiently mining long patterns from databases[C]//Pro-ceeding of 1998 ACM S1GMOD International Conference on Manage-ment of Data(SIGMOD’98),New York:ACM Press,1998:85-93.
  • 5Gouda K,Zaki M J.Efficiently mining maximal frequent item sets[C]//Proceeding of the IEEE International Conference on Data Mining,2001:163-170.
  • 6Zhou Q H,Wesley C,Lu B J.Smart Miner:A depth 1 algorithm guidedby tail information for mining maximal frequent item sets[C]//Pro-ceeding of the IEEE International Conference on Data Mining,2002:570-577.
  • 7Grahne G,Zhu J E.High performance mining of maximal frequent itemsets[C]//Proceeding of the 6th SIAM International Workshop on HighPerformance Data Mining,2003:135-143.
  • 8http://archive.ics.uci.edu/ml/datasets.html
  • 9Grahne G,Zhu J F.High performance mining of maximal frequent itemsets[C]//Proc.of the 6th SIAM Int’l Workshop on High PerformanceData Mining(HPDM 2003),2003:135-143.
  • 10颜跃进,李舟军,陈火旺.基于FP-Tree有效挖掘最大频繁项集[J].软件学报,2005,16(2):215-222. 被引量:68

二级参考文献13

  • 1宋余庆 朱玉全 孙志辉 陈耿.基于FP—Tree的最大频繁项集挖掘及其更新算法.软件学报,2003,14(9):1586—1592[J].http://wwwjos.org.cn/1000-9825/14/1586.htm,:.
  • 2Agrawal R, Srikant R. Fast algorithms for mining association rules. In: Proc. of the 20th Int'l Conf. on VLDB. 1994. 487-499.http://www.almaden.ibm.conVcs/people/srikant/papers/vldb94.pdf.
  • 3Bayardo R. Efficiently mining long patterns from databases. In: Haas LM, ed. Proc. of the ACM SIGMOD Int'l Conf. on Management of Data. New York: ACM Press, 1998. 85-93.
  • 4Burdick D, Calimlim M, Gehrke J. Mafia: A maximal frequent itemset algorithm for transactional databases. In: Proc. of the 17th Int'l Conf. on Data Engineering. 2001. 443-452. http://www.cs.cornell.edu/boom/2001 sp/yiu/mafia-camera.pdf.
  • 5Gouda K, Zaki MJ. Efficiently mining maximal frequent itemsets. In: Proc. of the 1st IEEE Int'l Conf. on Data Mining. 2001.163-170. http ://www.cs .tau. ac .il/-fiat/dmsem03/E fficient%20Mining%20Maxmal%20Frequent%20Itemsets%20-%202001 .pdf.
  • 6Wang H, Li QH. An improved maximal frequent itemset algorithm. In: Wang GY, eds. Proc of the Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, the 9th Int'l Conf (RSFDGrC 2003). LNCS 2639, Heidelberg: Springer-Verlag, 2003. 484-490.
  • 7Zhou QH, Wesley C, Lu BJ. SmartMiner: A depth 1st algorithm guided by tail information for mining maximal frequent itemsets.In: Proc of the IEEE Int'l Conf on Data Mining (ICDM2002). 2002. 570-577. http://www.serviceware.com/pdffiles/datasheets/ServiceWare-Smartminer-Datasheet.pdf.
  • 8Grahne G, Zhu JF. High performance mining of maximal frequent itemsets. In: Proc of the 6th SIAM Int'l Workshop on High Performance Data Mining (HPDM 2003). 2003. 135-143. http://www.cs.concordia.ca/db/dbdm/hpdm03.pdf.
  • 9Agarwal RC, Aggarwal CC, Prasad VVV. Depth 1 st generation of long patterns. In: Proc. of the 6th ACM SIGKDD Int'l Conf on Knowledge Discovery and Data Mining. 2000. 108-118. http://www.cs.tau.ac.il/-fiat/dmsem03/Depth%20First%20Generation%20of%20Long%20Patterns%20-%202000.pdf.
  • 10Wang H, Xiao ZJ, Zhang H J, Jiang SY. Parallel algorithm for mining maximal frequent patterns. In: Zhou XM, ed. Advanced Parallel Processing Technologies (APPT 2003). LNCS 2834, Heidelberg: Springer-Verlag, 2003. 241-248.

共引文献71

同被引文献24

  • 1吉根林,杨明,宋余庆,孙志挥.最大频繁项目集的快速更新[J].计算机学报,2005,28(1):128-135. 被引量:47
  • 2颜跃进,李舟军,陈火旺.基于FP-Tree有效挖掘最大频繁项集[J].软件学报,2005,16(2):215-222. 被引量:68
  • 3颜跃进,李舟军,陈火旺.一种挖掘最大频繁项集的深度优先算法[J].计算机研究与发展,2005,42(3):462-467. 被引量:20
  • 4潘云鹤,王金龙,徐从富.数据流频繁模式挖掘研究进展[J].自动化学报,2006,32(4):594-602. 被引量:34
  • 5AGRAWAL R,IMIEUNSKI T,SWAMI A.Mining association rules between sets of items in large databases[C].Proceedings of ACM SIGMOD International Conference on Management of Data,1993:207-216.
  • 6BAYARDO R.Efficiently mining long patterns from databases[C].Proceeding of 1998 ACM SI GMOD International Conference on Management of Data,New York:ACM Press,1998:85-93.
  • 7AGRAWAL R,SRIKANT R.Fast algorithms for mining association,rules[C].Proceedings of the 20th International Conference on Very Large Database,1994:478-499.
  • 8GOUDA K,ZAKI M J.Efficiently mining maximal frequent item sets[C].Proceedings of the IEEE International Conference on Data Mining,2001:163-170.
  • 9ZHOU QH,WESLEY C,LU BJ.SmartMiner.A depth 1st algorithm guided by tail information for mining maximal frequent item sets[C].Proceedings of the IEEE International Conference on Data Mining,2002:570-577.
  • 10GRAHNE G,ZHU J E.High performance mining of maximal frequent item sets[C].Proceedings of the 6th SIAM International Workshop on High Performance Data Mining,2003:135-143.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部