期刊文献+

基于提升小波的地形数据混合熵编码压缩与实时渲染 被引量:2

Terrain Data Hybrid Entropy Coding Compression Based on Lifting Wavelet and Real-time Rendering
下载PDF
导出
摘要 高分辨率地形高程和影像数据给交互式3维地形可视化应用带来沉重压力,主要体现在数据存储、调度传输及实时渲染等方面。该文设计一种基于提升小波变换与并行混合熵编码的地形数据高性能压缩方法,并结合图形处理器(Graphics Process Unit,GPU)Ray-casting实现大规模3维地形可视化。首先建立多分辨率地形块的小波变换模型来映射其求精和化简操作;其次,基于提升小波变换分别构建格网数字高程模型(Digital Elevation Model,DEM)和地表纹理的多分辨率四叉树,对量化后的稀疏小波系数引入并行游程编码与并行变长霍夫曼编码相结合的混合熵编码进行压缩;将压缩数据组织成多序列层进码流进行实时解压渲染。在GPU上基于统一计算设备构架(Compute Unified Device Architecture,CUDA)实现该文的提升小波变换与混合熵编码。实验表明,在压缩比、信噪比与编解码的数据吞吐量综合指标方面,该文方法优于其它类似方法。实时渲染的高帧率满足了交互式可视化的要求。 High resolution terrain Digital Elevation Model (DEM) and orthophoto bring severely load including data storage, schedule and real-time rendering, etc.. A high performance terrain data compression method is proposed based on lifting wavelet transform and parallel hybrid entropy codec, and combined with Graphics Process Unit (GPU) Ray-casting to achieve large-scale 3D terrain visualization. First, the multi-resolution wavelet transform model of terrain tile is constructed to map the refinement and simplification operation. Then the multi-resolution quadtree of DEM and terrain texture is built separately based on lifting wavelet transform, the sparse wavelet coefficient generated from quantization is compressed by a hybrid entropy codec which combined with parallel run-length coding and variable-length Huffman coding. The compressed data are organized into progressive stream to do real-time decoding and rendering. The present lifting wavelet transform and hybrid entropy codec is implemented by Compute Unified Device Architecture (CUDA) in GPU. Experiment results show that the data compression ratio is effective with this method, PSNR and code-decode data throughput. High Frames Per Second (FPS) in real-time rendering satisfied the demand of interactive visualization.
出处 《电子与信息学报》 EI CSCD 北大核心 2012年第12期3013-3020,共8页 Journal of Electronics & Information Technology
基金 国家863计划项目(2009AA012201) 信息工程大学博士生学位论文创新基金(BSLWCX201103)资助课题
关键词 数据压缩 提升小波 并行熵编码 图形处理器 地形可视化 Data compression Lifting wavelet Parallel entropy coding Graphics process unit Terrain visualization
  • 相关文献

参考文献14

  • 1Wang X, Zheng X, and Yin Q compression and real-time rendering Large scale terrain based on wavelettransform[C]. Proceedings of Computational Intelligence and Security (CIS), Suzhou, China, 2008, 2: 489-493.
  • 2Marc Treib, Florian Reichl, Stefan Auer, et al.. Interactive editing of gigasampte terrain fields[J]. Computer Graphics Forum, 2012, 31(2): 55-71.
  • 3Kim J K and Ra J B. A real-time terrain visualization algorithm using wavelet-based compression[J]. The Visual Computer, 2004, 20(2): 67-85.
  • 4Celine Roudet, Florent Dupont, and Atilla Baskurt. Semi- regular 3D mesh progressive compression and transmission based on an adaptive wavelet decomposition[C]. Proceedings of SPIE Wavelet Applications in Industrial Processing VI, San Jose, USA, 2009, 7248: 37-48.
  • 5张燕燕,黄其涛,韩俊伟.基于提升小波的大地形累进压缩及实时渲染[J].计算机辅助设计与图形学学报,2010,22(8):1352-1359. 被引量:5
  • 6施松新,张引,叶修梓,张三元.大规模地形场景流式渐进传输[J].浙江大学学报(工学版),2008,42(11):1862-1867. 被引量:3
  • 7Furst N, Weiss A, Heide M, et al.. CUJ2K library, version 1.1[OL]. http://cuj2k.sourceforge.net, 2012.
  • 8Balevic A. Parallel variable-length encoding on GPGPUs[C]. Proceedings of Parallel and Distributed Computing, Delft, Holland, 2009: 26-35.
  • 9Taubman D S and Marcellin M W. JPEG2000: ImageCompression Fundamentals, Standards and Practice[M]. Norwell: Kluwer Academic Publishers, 2002: 262-293.
  • 10Ding Wen-peng, Wu Feng, Wu Xiao-lin, et al.. Adapdve directional directionM lifting-based wavelet transform for image caxding[J]. IEEE Transactions on Image Processing, 2007, 16(2): 416-428.

二级参考文献128

  • 1张立强,杨崇俊.多进制小波和二叉树实现大规模地形的实时漫游[J].计算机辅助设计与图形学学报,2005,17(3):467-472. 被引量:13
  • 2张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 3HOPPE H. Progressive meshes [C]//Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques. New Orleans: ACM, 1996: 99- 108.
  • 4PAJAROLA R, ROSSIGNAC J. Compressed progressive mesh[J].IEEE Transactions on Visualization and Computer Graphics, 2000, 6(1) : 79 - 93.
  • 5ALLIEZ P, DESBRUN M. Progressive compression for lossless transmission of triangle meshes [C]// Proceed- ings of the 28th Annual Conference on Computer Graphics and Interactive Techniques. Los Angeles: ACM, 2001: 195 - 202.
  • 6SOUTHERN R, PERKIN S, BARRY S, et al. A stateless client for progressive view-dependent transmission [C]// Proceedings of the Sixth International Conference on 3D Web Technology. Paderbon: ACM, 2001: 43- 50.
  • 7KIM J, LEE S, KOBBELT L. View-dependent streaming of progressive meshes [C] // Proceedings of the Shape Modeling International 2004. Genova : IEEE, 2004:209 - 220.
  • 8KHODAKOVSKY A, SCHRODER P, SWLDENS W. Progressive geometry compression[C]// Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques. New Orleans: ACM/Addison- Wesley Publishing Co. , 2000:271 -278.
  • 9KIM J K, RA J B. A real-time terrain visualization algorithm using wavelet-based compression [J]. The Visual Computer: International Journal of Computer Graphics, 2004, 20(2): 67-85.
  • 10YOON I, NEUMANN U. Web-based remote rendering with IBRAC [J].Computer Graphics Forum, 2000, 19 (3) : 321 - 330.

共引文献730

同被引文献29

  • 1谢然红,肖立志,邓克俊,廖广志,刘天定.二维核磁共振测井[J].测井技术,2005,29(5):430-434. 被引量:49
  • 2张辛耘,王敬农,郭彦军.随钻测井技术进展和发展趋势[J].测井技术,2006,30(1):10-15. 被引量:164
  • 3廖广志,肖立志,谢然红,付娟娟.孔隙介质核磁共振弛豫测量多指数反演影响因素研究[J].地球物理学报,2007,50(3):932-938. 被引量:59
  • 4Le Hoang Son N D L,Van Huong T,Dien N H.A lossless effective method for the digital elevation model compression for fast retrieval problem[J].International Journal of Computer Science and Network Security(IJCSNS),2011,11(6):35-44.
  • 5Candès E J.Compressive sampling[C]//Proceedings of the International Congress of Mathematicians,2006,3:1433-1452.
  • 6Candes E,Romberg J,Tao T.Stable signal cecovery from incomplete and inaccurate measurements[J].Communications on Pure and Applied Mathematics,2006,59(8):1207-1223.
  • 7Donoho D L.Compressed sensing[J].IEEE Transactions on Information Theory,2006,52(4):1289-1306.
  • 8Haupt J,Bajwa W U,Rabbat M,et al.Compressed sensing for networked data[J].IEEE Signal Processing Magazine,2008,25(2):92-101.
  • 9Aguilera E,Nannini M,Reigber A.Wavelet-based compressed sensing for SAR tomography of forested areas[C]//EUSAR,2012:259-262.
  • 10Lustig M,Donoho D L,Santos J M,et al.Compressed sensing MRI[J].IEEE Signal Processing Magazine,2008:72-82.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部