期刊文献+

电场作用下正癸烷液滴在常温常压下的燃烧特性 被引量:2

Combustion Behavior of N-Decane Droplet in Direct Current Electric Field in Normal Gravity Field
下载PDF
导出
摘要 通过利用高速摄像机对液滴燃烧时火焰和粒径的实时测量,以及激光诱导白炽光(LII)对碳烟体积分数的测量方法,研究了垂直电场作用下正癸烷液滴在重力场中的燃烧特性,结果表明:当V>0时,随着电压的增加,液滴上半部分的火焰高度不断缩短,下半部分不断被拉长,在电压为5,kV左右时,火焰呈上下对称结构,燃烧速率常数随着电压的增加先减小后增大,碳烟体积分数随着电压的增加先减小后增大再减小;当V<0时,燃烧速率常数随着电压的增加而增大,碳烟体积分数随着电压的增加逐渐减小;燃烧速率常数随电压的变化是由于碳烟颗粒与外加电场的相互作用而造成的,碳烟颗粒向周围环境的辐射换热量的减少是造成燃烧速率常数增大的主要原因. In this paper, by adopting the laser-induced incandescence (LII)on soot volume fraction measurement method, and by using high speed camera to measure combustion flame and droplet size, the combustion behavior of n-decane droplet in vertical electric field in gravity field is studied. The experimental results show that, when V〉 0, as voltage increases, the flame height above the droplet center is continuously shortened, while that of the bottom part is stretched; at the voltage of 5 kV, the flames of the upper and bottom parts form a symmetrical structure; with the increase of voltage, the burning rate constant first decreases and then increases, and soot concentration first decreases and then increases and finally decreases again. When V〈 0, burning rate constant increases with voltage; soot concentration decreases with the increase of voltage; the change of burning rate constant with voltage is mainly due to the interaction of soot particles with the applied direct current electric field, and the reduced radiation heat of soot particles to the ambient environment is the main reason for the decrease of burning rate constant.
出处 《燃烧科学与技术》 EI CAS CSCD 北大核心 2012年第6期486-490,共5页 Journal of Combustion Science and Technology
基金 国家自然科学基金资助项目(51076072)
关键词 电场 液滴燃烧 火焰高度 燃烧速率常数 碳烟体积分数 electric field droplet combustion flame height burning rate constant soot volume fraction
  • 相关文献

参考文献12

  • 1Bradley D. Advanced Combustion Methods[M]. London: Academic Press, 1986.
  • 2Lawton J, Weinberg F J. Electrical Aspects of Combustion [M]. Oxford: Clarendon Press, 1969.
  • 3Saito M, Sato M, Sawada K. Variation of flame shape and soot emission by applying electric field[J]. Journal of Electrostatics, 1997, 39(4): 305-311.
  • 4Van den Boom J D B J, Konnov A A, Verhasselt A M H H, et al. The effect of a DC electric field on the laminar burning velocity of premixed methane/air flames[J]. Proceedings of the Combustion Institute, 2009, 32(1) : 1237-1244.
  • 5Wang Y, Nathan G J, Yao Q, et al. Effect of a uniform electric field on soot in laminar premixed ethylene/air flames[J]. Combustion and Flame, 2010, 157(7): 1308-1315.
  • 6Saito M, Arai T, Arai M. Control of soot emitted from acetylene diffusion flames by applying an electric field[J]. Combustion and Flame, 1999, 119(3):356- 366.
  • 7Vega Eugene V, Sung S S, Lee K Y. NO emission of oxygen-enriched CH4/O2/N2 premixed flames under electric field [J]. Fuel, 2007, 86 (4) : 512-519.
  • 8Nakamura J. Effect of the electric field upon the spectra of the hydrocarbon diffusion flame [J]. Combustion and Flame, 1959, 3: 277-284.
  • 9Imamura O, Kubo Y, Osaka J, et al. A study on single fuel droplets combustion in vertical direct current electric fields[J]. Proceedings of the Combustion Institute, 2005, 30(2) : 1949-1956.
  • 10Law C K, Williams F A. Kinetics and convection in the combustion of alkane droplets[J]. Combustion and Flame, 1972, 19(3): 393-405.

同被引文献9

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部