期刊文献+

基于RBF神经网络的X80管线钢成分设计与组织性能分析

Composition design and microtructure-property analysis of X80 pipeline steel based on RBF neural network
原文传递
导出
摘要 采用RBF神经网络对204组X70管线钢生产数据进行训练,建立了管线钢成分与力学性能的预测模型,经检验该模型预报精度高,网络预报值与实际值较吻合。利用此模型预报了C、Mn、Mo、Nb、V、Ti等元素含量对管线钢性能的影响规律,并在此基础上确定了X80管线钢的成分范围。对试制生产的X80管线钢进行组织性能检测,结果表明,X80钢的显微组织主要由针状铁素体和粒状贝氏体组成,晶粒细小,力学性能指标达到X80管线钢应用要求。 A radial basis function (RBF) artificial neural network mapping model for composition and mechanical properties of pipeline steels was established based on using nearest neighbor clustering of 204 sets of actual production data. The trained network model exhibits higher accuracy in the prediction, and the prediction values and measured values are coincident very well. Using this model, a test of forecasting on the effects of contents of the alloying elements of C, Mn, Mo, Nb, V, Ti on mechanical properties was conducted, and composition range of X80 pipeline steel was identified. The microstrueture and mechanical properties of X80 pipeline steel were tested. The results show that the mierostructure of X80 pipeline steel is mainly composed of acieular ferrite and granular bainite, and the grain size is fine and the mechanical properties of the X80 pipeline steel fulfill the specifications for engineering application.
出处 《材料热处理学报》 EI CAS CSCD 北大核心 2012年第12期152-157,共6页 Transactions of Materials and Heat Treatment
基金 湖南省重大科技专项
关键词 RBF神经网络 成分设计 X80管线钢 组织性能 RBF neural network composition design X80 pipeline steel microstrueture and property
  • 相关文献

参考文献14

二级参考文献124

共引文献525

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部