期刊文献+

基于改进A*算法的机器人路径规划方法研究 被引量:15

Research on Path Planning Method of Robot Based on Improved A* Algorithm
下载PDF
导出
摘要 在机器人智能控制的研究中,路径规划是移动机器人研究的重要内容。为提高常规路径规划方法中执行效率和稳定性,采用头尾双向搜索法对普通A*算法进行优化,即分别从起始节点和目标节点开始扩展,直到在中途有相同的临界子节点。同时改进节点h值的计算方式,以减少扩展节点的规模,并在仿真平台上进行机器人路径规划仿真,改进算法效果得以优化验证。仿真实验结果表明,该方法的寻优能力及稳定性均优于普通A*算法,可使智能机器人更高效地进行自主导航。 Path planning is important subjects in research of mobile robots control. In order to increase the efficiency and stability of usual ways used in path planning, the searching method of double direction has been used to optimize common A * algorithm. Such method may expand the starting node and the goal node at the same time, and if a same adjacency child node was found in the way, the algorithm would be terminated. In the meanwhile, the calculating way of the h value of a node was also improved to reduce the size of the extended nodes. By the simulation of path planning on the virtual platform, the results of simulating experiments prove that the ability of finding the best solution and the stability of this method are greatly improved compared with common A * method,consequently the planning path of intelligent robots can be much efficient.
出处 《计算机技术与发展》 2012年第12期108-111,共4页 Computer Technology and Development
基金 国家自然科学基金(61005008 60803049)
关键词 A*算法 机器人 路径规划 栅格 A * algorithm robot path planning grid
  • 相关文献

参考文献12

  • 1Stentz A. A real-time resolution optimal re-planning for glob- ally constraint problem[ C]//The 18th National Conf on Arti- ficial Intelligence. Cambridge, MA : M1T Press, 2002 : 1088 - 1096.
  • 2Likhaehev M. Search-based Planning tbr Large Dynamic En- vironments [ D ]. Pennsylvania : C MU,2004.
  • 3Tovey C, Greenberg S, Koenig S. Improved analysis of A * [ C]//Proceedings of" the International Contrencc on Robot-ics & Automation. Taiwan: [ s. n. ] ,2003 : 14-19.
  • 4Koenig S, Likhachev M. A * Lite [ C ]//Proceedings of the AAAI Conference of Artificial Intelligence. [ s. 1. ] : [ s. n. ], 2002:476-483.
  • 5Whangbo Taeg-Keun. Efficient Modified Bidirectional A * Algorithm for Optimal Route-finding [ C I//IEA/AIE 2007. Is. 1. ]:Is. n. ] ,2007:344-353.
  • 6Koenig S, Likhachev M, Furcy D. Lifelong planning A * [ J i]. Artificial Intelligence Journal,2004,155 ( 1-2 ) : 93-146.
  • 7van den Berg J, Overmars M. Roadmap-based Motion Plan- ning in Dynamic Environments[ J]. IEEE Transactions on Ro- botics ,2005,21 ( 5 ) :885-897.
  • 8Gelperin D, On the Optimality of A * Aliifieial Intelligence [ J ]. 1EEE Transactions on Robotics,2000,8 ( 1 ) :60-90.
  • 9Han K H, Park K H, Lee C H, et al. Parallel quantum-in- spired genetic algorithm for combinatorial optimization prob- lem [ C ]//Proceedings of the 2001 Congress on Ewlutionary Computation. USA : IEEE Press ,2001 : 1422-1429.
  • 10戴博,肖晓明,蔡自兴.移动机器人路径规划技术的研究现状与展望[J].控制工程,2005,12(3):198-202. 被引量:75

二级参考文献59

  • 1王小忠,孟正大.机器人运动规划方法的研究[J].控制工程,2004,11(3):280-284. 被引量:18
  • 2邰宜斌,席裕庚,李秀明.一种机器人路径规划的新方法[J].上海交通大学学报,1996,30(4):94-100. 被引量:14
  • 3Amato N M, et al. Choosing Good Distance Metrics and Local Planners for Probabilistic Roadmap Methods, Robotics and Automation[ C ]. Proceedings IEEE International Conference on, 1998. 630- 637.
  • 4Hsuan Chang,Tsai-Yen Li; Assembly Maintainability Study with Motion Planning, Robotics and Automation [ C ]. ProceedingsIEEE International Conference on, 1995. 1012-1019.
  • 5Amato N M,Wu Y. A Randomized Roadmap Method for Path and Manipulation Planning, Robotics and Automation [ C ]. Proceedings IEEE International Conference on, 1996.113-120.
  • 6Koren Y, Borenstein J. Potential Field Methods and Their Inherent Limitations for Mobile Robot Navigation, Robotics and Automation[C]. Proceedings IEEE International Conference on, 1991. 1398-1404.
  • 7Ahuactzin J M ,et al. A Motion Planning-based Approach for Inverae Kinematics of Redundant Robots: the Kinematic Roadmap, Robotics and Automation [ C ]. Proceedings IEEE International Conference,1997. 3609-3614.
  • 8S A Wilmarth ,et al. Motion planning for a Rigid Body Using Random Networks on the Medial Axis of the Free Space [ C ]. Proceedings of ACM Symposium on Computational Geometry, 1999. 173-180.
  • 9D Hsu, et al. Path Planning in Expansive Configuration Spaces[ J].International Journal of Computational Geometry and Applications,1999,9(4/5) :495-512.
  • 10M H Overmars,et al. A Probabilistic Learning Approach to Motion Planning[ C]. Proceedings of Workshop on Algorithmic Foundations of Robotics, 1994.19- 37.

共引文献82

同被引文献130

引证文献15

二级引证文献82

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部