期刊文献+

应用近红外光谱法建立伤疖膏制备过程中黄芩苷含量模型 被引量:4

Quantitative Models for Baicalin Content Using NIR Technology for the Study of Shang Jie Plaster
下载PDF
导出
摘要 建立一种伤疖膏制备过程提取液中黄芩苷动态含量快速测定的近红外光谱分析方法,近红外透射光谱法扫描得到65组伤疖膏制备过程中提取液的近红外光谱图,以提取液中黄芩苷的HPLC测量值作为对照值,采用偏最小二乘回归算法(PLSR)建立NIR光谱与对照值的校正模型。校正模型主成分数为8,交叉验证均方根差(RMSECV)为0.006 8,相关系数(r)为0.999 1。应用校正模型对预测集的30组样品进行黄芩苷含量预测,所得预测均方根差(RMSEP)为0.009 2,r为0.998 7。结果表明,该方法快速、准确,为复方膏剂制备过程中化学成分快速定量和质量控制提供了方法和依据。 A dynamic prediction model for the content of Baicalin in Shang Jie plasters extract solutions was developed using near-infrared spectroscopy in transmission mode.Sixty five spectra were obtained through near-infrared transmission mode during extracting process.Refering to the content of Baicalin performed by reversed-phase high performance liquid chromatography(HPLC),the calibration model was developed with the application of partial least squares regression algorithm(PLSR).The constructed model was validated by 30 samples;some parameters of the calibration model were optimized by cross-validation.The root mean square error(RMSECV) of Baicalin was 0.006 8 mg·g-1,the correlation coefficient(R) was 0.9991,and the optimal dimension factor was 8;After predicted by test set,the root mean square error(RMSEP) and correlation coefficient(R) of prediction obtained were 0.009 2 mg·g-1 and 0.998 7 respectively.This work demonstrated that NIR spectroscopy combined with PLS could be used for the determination of Baicalin in Shang Jie plasters extract.
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2013年第1期74-77,共4页 Spectroscopy and Spectral Analysis
基金 国家重大新药创制科技重大专项项目(2009095020-10)资助
关键词 近红外光谱法 伤疖膏 黄芩苷 偏最小二乘回归(PLSR) 含量测定 NIR Shang Jie plaster Baicalin PLSR Content determination
  • 相关文献

参考文献5

二级参考文献33

共引文献172

同被引文献67

  • 1史春香,杨悦武,郭治昕,祝国光.近红外技术定量分析丹参药材[J].中药材,2006,29(9):897-899. 被引量:20
  • 2孙国明,刘国林.近红外光谱技术在独活属药用植物分类中的应用[J].中国中药杂志,2006,31(23):1996-1998. 被引量:12
  • 3陈斌,崔广,金尚忠,王小天.近红外光谱在快速检测棉制品中含棉量的应用[J].江苏大学学报(自然科学版),2007,28(3):185-188. 被引量:25
  • 4孙素琴,周群,陈建波.中药红外光谱分析与鉴定.北京:化学工业出版社,2010:36-69.
  • 5中国药典2010年版.一部[s].2010:254.
  • 6Cheng C G, Liu J, Wang H, et al. Ifrared spectroscopy studies of Chinese medicines. Appl Spectrosc Rev, 2010, 45:165-166.
  • 7Pieters S, Saeys W, Van den Kerkhof T, et al. Roboust calibrations on reduced sample sets for API content prediction in tablets: defintion of a cost-effective NIR model development strategy. Anal Chim Acta, 2013, 761:62-70.
  • 8Wu J, Luo W, Wang X K, et al. A new application of WT-ANN method to control the preparation process of metformin hydrochloride tablets by near infrared spectroscopy compared to PLS. JPharm BiomedAnal, 2013, 80:186-191.
  • 9Perez-Guaita D, Ventura-Gayete J, Perez-Rambla C, et al. Evaluation of infrared spectroscopy as a screening tool for serum analysis impact of the nature of sample included in the calibration set. Microchem J, 2013, 106:202-211.
  • 10Li D, Jin Z X, Zhou Q, et al. Discrimination of five species of Fritillaria and its extracts by FT-IR and 2D-IR. JMol Struct, 2010, 974:68-72.

引证文献4

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部