期刊文献+

具时滞物价瑞利方程的Hopf及共振余维2分支 被引量:2

Hopf and resonant codimension two bifurcation in price rayleigh equation with delays
下载PDF
导出
摘要 研究了以滞量r为参数的具时滞物价瑞利方程的Hopf分支问题,得到了Hopf分支值及分支方向,估计出时滞r可取多少个不同的值使方程有周期解,并利用规范型理论和中心流形定理给出了确定分支方向及分支周期解稳定性的计算公式.证明了模型中可以出现共振余维2分支,给出了参数空间中点位置的描述,指出参数空间中超越特征方程有两对纯虚根±iω1,±iω2,并且ω1∶ω2=m∶n,(m,n∈Z+),最后通过数值模拟验证了理论分析结果. This paper studied Hopf bifurcation of Price Rayleigh equation with delay r as parameter and obtained the branch value and the direction of Hopf bifurcation.The values of delay r was estimated,which can lead to periodic solution.Moreover,used theories of normal form and center manifold to obtain the calculation formula of the direction of the bifurcation and the stability of the periodic solution.It was found that resonant codimension two bifurcation occur in this model.A complete description of the location of points in parameter space where the transcendental characteristic equation possesses two pairs of pure imaginary roots,±iω1,±iω2 with ω1∶ω2=m∶n(m,n∈Z+,Z+ is the set of positive integers) is given.Some numerical simulation examples for justifying the theoretical results are also illustrated.
出处 《东北师大学报(自然科学版)》 CAS CSCD 北大核心 2012年第4期43-49,共7页 Journal of Northeast Normal University(Natural Science Edition)
基金 国家自然科学基金资助项目(10726062)
关键词 物价瑞利方程 HOPF分支 余维2分支 分支方向 稳定性 周期解 price rayleigh equation hopf bifurcation codimension two bifurcation direction of bifurcation stability periodic solution
  • 相关文献

参考文献9

二级参考文献50

共引文献45

同被引文献21

  • 1吕堂红.双时滞物价瑞利方程的Neimark-Sacker分支[J].中北大学学报(自然科学版),2012,33(5):490-494. 被引量:2
  • 2ZHENG BaoDong 1,LIANG LiJie 1 & ZHANG ChunRui 2 1 Department of mathematics,Harbin Institute of Technology,Harbin 150001,China,2 Department of mathematics,Northeast Forestry University,Harbin 150040,China.Extended Jury criterion[J].Science China Mathematics,2010,53(4):1133-1150. 被引量:4
  • 3刘汉武,王荣欣,刘建新.具有性别结构的食饵-捕食者模型[J].生物数学学报,2005,20(2):179-182. 被引量:30
  • 4李学鹏,杨文生.一类具有性别结构的捕食系统[J].厦门理工学院学报,2007,15(4):50-54. 被引量:2
  • 5WANG WEN-DI,CHEN LAN-SUN. A predator-prey system with stage structure for predator[J]. Applied Mathematics andComputation, 1997,33(8) :83-91.
  • 6SAPNA DEVI. Effects of prey refuge on a ratio-dependent predator-prey model with stage-structure of prey population[J],Applied Mathematical Modelling,2013,37(6) :4337-4349.
  • 7HU HAI-JUN i HUANG LI-HONG. Stability and Hopf bifurcation in a delayed predator-prey system with stage structure forprey[J]. Nonlinear Analysis:Real World Applications*2010.11(4) :2757-2769.
  • 8LI FENG, LI HONG-WEI. Hopf bifurcation of a predator-prey model with time delay and stage structure for the prey[J].Mathematical and Computer Modelling,2012,55(3/4) :672-679.
  • 9KUNAL CHAKRABORTYA, MILON CHAKRABORTYB’T K KAR. Optimal control of harvest and bifurcation of a prey-predator model with stage structured]. Applied Mathematics and Computation,2011 .217(21) :8778-8792.
  • 10CHENFENG-DE, WANG HAI-NA. LIN YU-HUA, et al. Global stability of a stage-structured predator-prey system[J].Applied Mathematics and Computation,2012,223(15) :45-53.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部