期刊文献+

基于结构光投影的二维S变换轮廓术 被引量:6

2D S-Transform Profilometry Based on the Structured Light Projection
原文传递
导出
摘要 S变换是一种集合了窗口傅里叶变换和小波变换优点的时-频分析技术,目前一维S变换已成功应用于结构光投影的条纹相位解调中。由于二维S变换可以对图像在两个方向上进行时频分析,具有更优于一维S变换的分析和处理能力。为了完善S变换的条纹相位解调理论,将二维S变换方法引入到基于结构光投影的三维光学测量中,研究了二维S变换在条纹相位解调中的原理及应用,给出了详尽的理论分析,并同一维S变换结果进行了比较。模拟和实验都表明,在条纹图解相中,二维S变换比一维S变换提取的相位精度更高,即使在存在较严重噪声污染的情况下也表现出良好的可靠性,体现出二维S变换提取相位的优势。 The S transform is one of the time-frequency analysis techniques which combines the advantages of both the short-time Fourier transform and wavelet transform. The one-dimensional S transform has been successfully used in fringe phase demodulation based on structured light projection. The two-dimensional (2D) S transform is able to carry out the time-frequency analysis for images in two directions, which is better than one-dimensional (1D) S transform. The 2D S transform based on the structured light projection method is introduced to the three-dimensional (3D) optical measurement for completing S transform fringe phase demodulation theory. This work studies the theory and application of the 2D S transform in fringe phase demodulation and gives a detailed theoretical analysis. Furthermore, a comparison between the 2D S transform and the 1D $ transform is carried out in fringe phase demodulation. The comparison result shows that the 2D S transform will achieve a higher accuracy than 1D S transform in extracting the phase distribution of the fringe patterns, even when the fringe patterns are seriously polluted by noises. Both the computer simulations and experiments verify that the 2D S transform outperforms the 1D S transform in the fringe analysis.
出处 《光学学报》 EI CAS CSCD 北大核心 2012年第12期87-96,共10页 Acta Optica Sinica
基金 国家自然科学基金(61177010) 国家973计划(2011CB301804)资助课题
关键词 测量 时-频分析 条纹相位解调 二维S变换 噪声抑制 measurement time-frequency analysis fringe phase demodulation two-dimensional S transform noise suppression
  • 相关文献

参考文献19

  • 1F. Chen, G. M. Brown, M. Song. Overview of three dimensional shape measurement using optical methods[J]. Opt. Engng., 2000, 39(1): 10-22.
  • 2V. Srinivasan, H. C. Liu, M. Halioua. Automated phase-measuring profilometry of 3-D diffuse objects[J]. Appl. Opt., 1984, 23(18): 3105-3108.
  • 3何宇航,曹益平,钟立俊,程旭升.采用频域滤波提高数字相位测量轮廓术的测量精度[J].中国激光,2010,37(1):220-224. 被引量:14
  • 4H. Takasaki. Moiré topography[J]. Appl. Opt., 1970, 9(6): 1467-1472.
  • 5M. Takeda, K. Mutoh. Fourier transform profilometry for the automatic measurement of 3-D object shapes[J]. Appl. Opt., 1983, 22(24): 3977-3982.
  • 6Xianyu Su, Likun Su, Wansong Li et al.. New 3D profilometry based on modulation measurement[C]. SPIE, 1998, 3558: 1-7.
  • 7Kemao Qian, Haixia Wang, Wenjing Gao. Windowed Fourier transform for fringe pattern analysis: theoretical analyses[J]. Appl. Opt., 2008, 47(29): 5408-5419.
  • 8Qian Kemao. Windowed Fourier transform for fringe pattern analysis[J]. Appl. Opt., 2004, 43(13): 2695-2702.
  • 9黄柏圣,许家栋.基于二维短时傅里叶变换的干涉相位图滤波方法[J].计算机工程与应用,2010,46(7):139-141. 被引量:5
  • 10翁嘉文,钟金钢.小波变换在载频条纹相位分析法中的应用研究[J].光学学报,2005,25(4):454-459. 被引量:25

二级参考文献83

共引文献92

同被引文献59

引证文献6

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部