期刊文献+

基于纠错能力的SVM在变压器故障诊断的应用 被引量:4

Application of Transformer Fault Diagnosis Based on the Error-Correcting Codes Capability of SVM
下载PDF
导出
摘要 针对变压器的故障诊断,很多解决方法已被提出,但都有各种缺陷。为了提高变压器的故障诊断判正率,保证得到较高的精确度,提出了一种基于纠错编码和支持向量机相结合的多分类算法。介绍了纠错编码的原理应用并分析了编码长度、码间汉明距离与支持向量机多分类算法的推广性关系。运用VS2008对变压器中油中溶解气体(DGA)数据进行了仿真,结果表明该算法适合于变压器故障诊断。 For transformer fault diagnosis, a lot of solutions have been made, but they have many defects. In order to improve the correct judging ratio of transformer fault diagnosis and guarantee high accuracy, A muhiclass classifi- cation algorithm based on error-correcting codes and support vector machine is proposed. The application of the principle of error-correcting codes is described and the relation between generalization performance of muhi-classifi- cation algorithm of support vector machine and the code length, Hamming distance between codes is studied. U- sing VS2008 dissolved gases in transformer oil data is simulated and diagnosis shows that the algorithm has higher classification accuracy.
出处 《电力科学与工程》 2012年第11期39-43,共5页 Electric Power Science and Engineering
关键词 故障诊断 纠错编码 支持向量机 多分类 变压器 fauh diagnosis error-correcting codes Support Vector Machine multiclass classification transform-el
  • 相关文献

参考文献7

  • 1高文胜,严璋,谈克雄.基于油中溶解气体分析的电力变压器绝缘故障诊断方法[J].电工电能新技术,2000,19(1):22-26. 被引量:42
  • 2Bennett K P, Cristianini N, Shawe-Taylor J, et al. Enlar- ging the margin in perceptron decision trees [ J ]. Machine Learning, 2000,41 (3): 295-313.
  • 3Platt J, Cristianini N, Shawe Taylor J. Large margin DAGs for muhiclass classification [ J ]. Advances in Neural Infor- mation Processing Systems, 2000, (12) : 547-553.
  • 4Weston J, Watkins W. Muhiclass support vector machines [ R]. TR CSDTR 9804, 1998.
  • 5Dietterich T G, Bakiri G. Solving muhiclass learning prob- lems via error-correcting output codes [ J]. Journal of Artifi- cial Intelligence Research, 1995, (2) : 263 -286.
  • 6Duda R 0, Machanik, J W, Singleton R C. Function modeling experiments [ R ]. Stanford Research Institute, 1963.
  • 7J Shawe-Taylor, P L Bartlett, R C Williamson, et al, Structural risk minimization over data-dependent hierarchies [J], IEEE Trans on Information Theory, 1998, 44 (5) : 1926 - 1940.

二级参考文献24

共引文献41

同被引文献31

  • 1徐文,王大忠,周泽存,陈珩.结合遗传算法的人工神经网络在电力变压器故障诊断中的应用[J].中国电机工程学报,1997,17(2):109-112. 被引量:77
  • 2贾新章,李京苑.统计过程控制与评价[M].北京:电子工业出版社,2004
  • 3Vapnik.统计学习理论[M].张学工,译.北京:电子工业出版社,2004.
  • 4Wang T Y, Chiang H M. Fuzzy support vector machine for multi-class text categorization [ J ]. Information Processing and Management, 2007, 43 : 914 -929.
  • 5Chapelle O, Vapnik V, Bousquet O, et al. Choosing multi- ple parameters for support vector machines [ J ]. Machine Learning, 2002, (46) : 131 - 159.
  • 6Teodorovic D, Lucic P, Markovic G, Dell'Orco M. Bee col- ony optimization : principles and applications [ C ] , 2006 : 1Sl - 156.
  • 7Blake C L, Merz C J. UCI repository of machine learning databases. Univ. Clifornia, Dept. Inform. Comput. Sei., Irvine, 1998.
  • 8Kondagunturi R, Bradley E, Maggard K, et al. Benchmark circuits for analog and mixed-signal testing [ C. 1999.
  • 9韩家炜,K.AMBERM.数据挖掘:概念与技术[M].北京,机械工业出版社.2012.
  • 10TANG W H, WU Q H. Condition monitoring and assessment of power translbrmers using computational intelligence[M]. New York(USA): Springer-Verlag Press, 201 I.

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部