期刊文献+

一种基于模糊控制理论的汽车智能刹车控制算法 被引量:2

Based on Fuzzy Control Theory a Kind of the Intelligent Braking Control Algorithm
下载PDF
导出
摘要 针对传统的刹车控制方法在一些复杂路段进行刹车控制的时候,存在刹车距离大,控制时间长的缺陷。为此提出了一种基于模糊控制理论的汽车智能刹车控制方法。通过建立汽车整车动力模型,通过深入研究刹车控制原理,结合模糊控制理论完成刹车的智能控制。结果表明模糊控制器可以使得车辆的实时滑移率快速到达并保持在期望滑移率附近,从而使车辆获得最大的地面制动力以提高刹车性能,并在缩短制动距离同时保持方向的可操控性,相比于传统的控制器取得了更好的控制效果。 In traditional brake control methods in some complex sections for brake control,exist brake distance,control the time long defects.Therefore put forward based on fuzzy control theory of the intelligent braking control method.Through the establishment of automotive dynamic model,through the thorough research the brake control theory,combined with the fuzzy control theory to complete the brakes on intelligent control.The results show that the fuzzy controller can make the real-time vehicles the slip rate fast access to and keep expectations in the slip rate near,thus make the vehicle for maximum ground braking force in order to improve the brake performance,and shorten the braking distance and keep in the direction can be manipulative,than the traditional controller made better control effect.
作者 许晓玲
出处 《科技通报》 北大核心 2012年第12期152-154,共3页 Bulletin of Science and Technology
基金 宁夏自然科学基金资助项目(NZ1026)
关键词 刹车控制 模糊控制 制动距离 brake control fuzzy control braking distance
  • 相关文献

参考文献4

二级参考文献26

  • 1秦大同,谭强俊,杨阳,杨亚联,胡建军.CVT混合动力汽车再生制动控制策略与仿真分析[J].汽车工程,2007,29(3):220-225. 被引量:25
  • 2Wang Yujia, Yang Yupu. Particle Swarm Optimization with Preference Order Ranking for Multi-objective Optimization[J]. Information Sciences, 2009, 179(12): 1944-1959.
  • 3Kiranyaz S, Ince T, Yildirim A, et al. Evolutionary Artificial Neural Networks by Multi-dimensional Particle Swarm Optimization[J]. Neural Networks, 2009, 22(10): 1448-1462.
  • 4Marinakis Y, Marinaki M. A Hybrid Multi-swarm Particle Swarm Optimization Algorithm for the Probabilistic Traveling Salesman Problem[J]. Computers & Operations Research, 2010, 37(3): 432-442.
  • 5[3]Lippmann R;Cunningham R. Improving intrusion detection performance using keyword selection and neural network[C]. Proceedings. RAID'99,1999
  • 6[4]Lee, S.C.; Heinbuch, D.V. Training a neural-network based intrusion detector to recognize novel attacks[J]. IEEE Transactions on Systems, Man and Cybernetics, Part A, Volume: 31 Issue: 4 , July 2001, pp 294 -299
  • 7[5]J Balasubramaniyan, J Omar Garcia-Fernandez, D Isacoff, E Spafford, D Zamboni. An architecture for intrusion detection using autonomous agents[C].Proceedings of the 14th Computer Security Applications Conference, 1998. pp 13-24
  • 8[6]Frincke D, Don Tobin, Jesse McConnell et al. A framework for cooperative intrusion detection[C]. Proceedings of the 21st National Information Systems Security Conference, 1998, pp 361-373
  • 9[7]Jungwon Kim; Bentley, P.J. Towards an artificial immune system for network intrusion detection: an investigation of clonal selection with a negative selection operator[C] .Proceedings of the 2001 Congress on Evolutionary Computation. Volume: 2 , 2001, pp1244 -1252
  • 10Gao Yi-min, Chen Li-ping, M Ehsani. Investigation of the Effectiveness of Regenerative Braking for EV and HEV[ R]. SAE Paper 1999-01-2910, 1999.

共引文献38

同被引文献6

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部