期刊文献+

Investigation of in situ Growth of SrMoO_4 Nanoplates by Microcalorimetry 被引量:3

Investigation of in situ Growth of SrMoO_4 Nanoplates by Microcalorimetry
下载PDF
导出
摘要 SrMoO4 nanoplates were synthesized by a facile reverse microemulsion method at room temperature.Energy evolution of this in situ growth process was monitored by means of a microcalorimeter.A sharp exothermic peak for the initial reaction and two discontinuous relatively weak exothermic peaks for the subsequent crystal growth emerged on the microcalorimetric heat flow curve.Based on the in situ thermokinetic data,the rate constants of the nucleation process and crystallization process at 298.15 K were calculated to be 4.078×10-3 and 5.033×10-4 s-1,respectively.The growth mechanism and energy evolution were investigated. SrMoO4 nanoplates were synthesized by a facile reverse microemulsion method at room temperature.Energy evolution of this in situ growth process was monitored by means of a microcalorimeter.A sharp exothermic peak for the initial reaction and two discontinuous relatively weak exothermic peaks for the subsequent crystal growth emerged on the microcalorimetric heat flow curve.Based on the in situ thermokinetic data,the rate constants of the nucleation process and crystallization process at 298.15 K were calculated to be 4.078×10-3 and 5.033×10-4 s-1,respectively.The growth mechanism and energy evolution were investigated.
出处 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2012年第6期1058-1060,共3页 高等学校化学研究(英文版)
基金 Supported by the National Natural Science Foundation of China(No.20963001) the Major Project of Natural Science Foundation of Guangxi Province,China(No.0991001Z)
关键词 In situ growth SrMoO4 nanoplate MICROCALORIMETRY Heat flow curve In situ growth SrMoO4 nanoplate Microcalorimetry Heat flow curve
  • 相关文献

参考文献24

  • 1Kozma E, Bajgar R., Kozma E, Radiat. Phys. Chem., 2002, 65, 127.
  • 2Sun L. N., Guo Q. R., Wu X. L., Luo S. J., Pan W. L., Huang K. L., Lu J. F., Ren L., Cao M. H., Hu C. W., J. Phys. Chem. C, 2007, 111, 532.
  • 3Rushbrooke J. G., Ansorge R. E., Nuel. Instrum. Methods Phys. Res. Sect. A, 1989, 280, 83.
  • 4Wang H., Medina F. D., Zhou Y D., Zhang Q. N., Phys. Rev. B, 1992, 45, 10356.
  • 5Wang H., Medina F. D., Liu D. D., Zhou Y. D., J. Phys.: Condens. Mater., 1994, 6, 5373.
  • 6Tanaka K., Miyajima T., Shirai N., Zhang Q., Nakata R., J. Appl. Phys., 1995, 77, 6581.
  • 7Qu w., Wlodarski W., Meyer J. U., Sens. Actuators B, 2000, 64, 76.
  • 8Ehrenberg H., Weitzel H., Heid C., Fuess H., Wltschek G., Kroener T., Tol J. V., Bonnet M., .1. Phys.." Condens. Matter., 1997, 9, 3189.
  • 9Driscoll S. A., Ozkan U. S., Stud. Surf Sci. Catal., 1994, 82, 367.
  • 10Sugimoto T., Kimijima K., J. Phys. Chem. B, 2003, 107, 10753.

同被引文献82

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部