期刊文献+

一类具有双异宿环的五次哈密尔顿系统的极限环分支

BIFURCATION OF LIMIT CYCLES FOR A CLASS OF QUINTIC HAMILTONIAN SYSTEM WITH DOUBLE HETEROCLINIC LOOPS
下载PDF
导出
摘要 研究了一类具有双异宿环的五次哈密尔顿系统x=y,y=-(ax+bx3+cx5)在ε(α+βx2+x4)/y扰动下的分支现象,其中a<0,b>0,3b2=16ac.证明了当0<|ε|1时至多能分支出2个极限环,并且给出了完整的分支图. Abstract We consider bifurcation of a class of quintic Hamiltonian system x=y,y=-(ax+bx^3+cx^5)with double heteroclinic loops under small perturbation of the form , where a〈0,b〉0 and3b^2=16ac. It is proved that at most 2 limit cycles can be bifurcated for 0〈|ε|〈〈1, and a complete bifurcation diagram is obtained.
出处 《北京师范大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第6期587-591,共5页 Journal of Beijing Normal University(Natural Science)
基金 国家自然科学基金资助项目(11271046) the Tundamental Research Funds for the Central Universities
关键词 超椭圆哈密尔顿函数 阿贝尔积分 极限环 hyper-elliptic Hamiltonian function Abelian integral limit cycle
  • 相关文献

参考文献9

  • 1Arnold V I. Loss of stability of self-oscillations close to resonance and versal deformations of equivariant vector fields[J]. Funct Anal Appl, 1977, 11: 85.
  • 2李承治,李伟固.弱化希尔伯特第16问题及其研究现状[J].数学进展,2010,39(5):513-526. 被引量:17
  • 3Asheghi R, Zangeneh Z R H. Bifurcations of limit cycles from quintic Hamiltonian systems with an eye- figure loop[J]. Nonlinear Analysis, 2008, 68:2957.
  • 4Asheghi R, Zangeneh Z R H. Bifurcations of limit cycles from quintic Hamiltonian systems with an eye- figure loop(II)[J]. Nonlinear Analysis, 2008, 69:4143.
  • 5Asheghi R, Zangeneh Z R H. Bifurcations of limit cycles from quintic Hamiltonian system with a double cuspidal loop[J]. Computers and Mathematics with Applications, 2010, 59. 1409.
  • 6Zhang T, Tad6 M, Tian Y. On the zeros of the Abelianintegrals for a class of Li6nard systems [J]. Physics Letters A, 2006, 358: 262.
  • 7Zhao L, Qi M, Liu C. The cyclicity of period annuli of a class of quintic Hamiltonian systems[J]. Submitted.
  • 8Pontryagin L. On dynamical systems close to Hamiltonian ones[J]. Zh Exp Theor Phys, 1934, 4:234.
  • 9Li C, Zhang Z. A criterion for determining the monotonicity of the ratio of two Abelian integrals[J]. J Differential Equations, 1996, 124:407.

二级参考文献12

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部