摘要
Plant leaves respond to day/night cycling in a number of physiological ways. At the mRNA level, the expression of some genes changes during the 24 h period. To determine which proteins exhibited a rhythmic pattern of expression, proteomic profiles in maize seedling leaves were analyzed by high-throughput two-dimensional gel electrophoresis, combined with MALDI-TOF MS technology. Of the 464 proteins that were detected with silver staining in a pH range of 4-7, 17 (3.66%) showed clock rhythmicity in their abundance. These proteins belonged to diverse functional groups and proteins involved in photosynthesis and carbon metabolism were over-represented. These findings provide a new perspective on the relationship between the physiological functions of leaves and the clock rhythmic system.
Plant leaves respond to day/night cycling in a number of physiological ways. At the mRNA level, the expression of some genes changes during the 24 h period. To determine which proteins exhibited a rhythmic pattern of expression, proteomic profiles in maize seedling leaves were analyzed by high-throughput two-dimensional gel electrophoresis, combined with MALDI-TOF MS technology. Of the 464 proteins that were detected with silver staining in a pH range of 4-7, 17 (3.66%) showed clock rhythmicity in their abundance. These proteins belonged to diverse functional groups and proteins involved in photosynthesis and carbon metabolism were over-represented. These findings provide a new perspective on the relationship between the physiological functions of leaves and the clock rhythmic system.
基金
supported by the National Basic Research Program of China(2007CB109000)
the National Science Found for Distinguished Young Scholars, China(30925023)
the National Natural Science Foundation of China(30671297)
the National High-Tech R&D Program of China(2009AA101102)