期刊文献+

一种面向入侵检测的半监督聚类算法 被引量:9

A semi-supervised clustering algorithm oriented to intrusion detection
原文传递
导出
摘要 为了解决传统的入侵检测聚类算法准确率较低这个问题,结合半监督学习的思想,提出了一种面向入侵检测的半监督聚类算法。首先利用样本数据集中的部分标记数据,生成用于初始化聚类的种子集,通过计算样本数据集中标记点与每个类簇中标记点均值的欧氏距离,得到每类的初始聚类中心,实现了入侵检测数据的准确识别。该算法有效地避免了传统聚类算法中初始聚类中心选择的盲目性和随机性,提高了检测率。实验结果表明,在处理入侵检测数据时,该算法能够充分利用少量类标记信息进行半监督学习,较传统的K-means算法聚类效果更好,检测准确率更高。 The detection rate of the traditional intrusion detection clustering algorithm is low. We combined the idea of semi-supervised learning and proposed a semi-supervised clustering algorithm oriented intrusion detection in order to im- prove it. Based on the part of the labeled data in the sample dataset, we generated the Seed set for initializing the clus- ter. The accuracy recognition of the intrusion detection data was achieved by calculating the Euclidean distance between the labeled data in the sample dataset and the average value of labeled data in each cluster and getting the initial center point. The blindness and randomness of the traditional cluster algorithm were avoided when choosing the initial center point. Furthermore, the efficiency of the detection was also improved. Experimental results showed that the proposed algorithm could utilize less label information via semi-supervised learning, and could achieve a higher efficiency than the traditional K-means method when dealing with intrusion detection dataset.
出处 《山东大学学报(工学版)》 CAS 北大核心 2012年第6期1-7,共7页 Journal of Shandong University(Engineering Science)
基金 国家自然科学基金资助项目(50674086) 高等学校博士学科点专项科研基金资助项目(20100095110003)
关键词 半监督学习 半监督聚类 入侵检测 K-均值 检测率 semi-supervised learning semi-supervised clustering intrusion detection K-means detection rate
  • 相关文献

参考文献21

  • 1胡翰,李永忠.一种改进的半监督聚类入侵检测算法[J].计算机仿真,2010,27(3):140-142. 被引量:1
  • 2BASU S, BANERJEE A, MOONEY R J. Semi-super- vised clustering by seeding[ C]//Proceedings of the 19th International Conference on Machine Learning. San Fran- cisco.. Morgan Kaufmann Publishers, 2002.. 27-34.
  • 3MUDA Z, YASSIN W, SULAIMAN M N. Intrusion de- tection based on k-means clustering and nal've bayes clas- sification[C]//Proceedings of the 7th International Con- ference on Information Technology in Asia. Kuching: IEEE CITA, 2011 : 1-6.
  • 4LIN Ying, ZHANG Yah, OU Yangjia. The design and implementation of host-based intrusion detection system [ C] // Proceedings of the Third International Symposium on Intelligent Information Technology and Security Infor- matics. Jinggangshan: IEEE IITSI, 2010 : 595-598.
  • 5JIA Chunfu, CHEN Deqiang. Performance evaluation of a collaborative intrusion detection system [C ]// Proceed- ings of the Fifth International Conference on Natural Corn-putation. Tianjin: IEEE ICNC, 2009: 409-413.
  • 6ABDULLAH A S, ULLAH Z. Data mining strategies and techniques for CRM systems [C ]// Proceedings of Inter- national Conference on System of Systems Engineering. Albuquerque : IEEE SoSE, 2009 : 1-5.
  • 7LEE W, STOLFO S. Data mining approaches for intru- sion detection[C ]//Proceedings of the 7th USENIX Se- curity Symposium. San Antonio: USENIX Association Berkeley, 1998 : 6-21.
  • 8MACQUEEN J. Some methods for classification and anal- ysis of multivariate observations[C ]//Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability. California: University of California Press, 1967 : 281-297.
  • 9ESTER M, KRIEGEL H P, SANDER J, et al. A densi- ty-based algorithm for discovering clusters in large spatial databases with noise[ C]// Proceedings of the Second In- ternational Conference on Knowledge Discovery and Data Mining (KDD-96). Massachusetts : AAAI Press, 1996 : 226-232.
  • 10LI Tian, WANG Jianwen. Research on network intru- sion detection system based on improved k-means cluste- ring algorithm [C ]// Proceedings of the 2009 Interna- tional Forum on Computer Science-Technology and Ap- plications. Washington: IEEE Computer Society, 2009 : 76-79.

二级参考文献66

共引文献167

同被引文献74

引证文献9

二级引证文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部