期刊文献+

基于组合模型的电主轴热误差预测 被引量:5

Thermal Error Forecasting for Motorized Spindle Based on Hybrid Model
下载PDF
导出
摘要 针对数控机床电主轴复杂的热变形机理,建立了基于径向基函数神经网络的组合预测模型预测其变化趋势。根据测量的电主轴热变形数据,分别采用自回归分析模型、灰色系统模型和智能组合预测模型对主轴热误差进行了预测。结果表明:电主轴热误差组合预测模型的预测准确性优于各单项模型,相对预测精度高出较高单项预测模型3%。 Aiming at the complicated thermal deformation generation mechanisms of motorized spindles of numerical control machines, a combined prediction model based on radial basis function neural network is proposed to forecast their change trends. According to the measured data of thermal deformation of motorized spindles, the thermal errors of spindles are predicted by means of the au- toregressive analysis model, gray system model and combination forecasting model respectively. Ex- perimental results show that the prediction precision of the combined prediction model for motorized spindle thermal errors is the highest among the three kinds of forecasting models, and its relative forecast precision is about 3 % above other single prediction models.
出处 《南京理工大学学报》 EI CAS CSCD 北大核心 2012年第6期1021-1025,共5页 Journal of Nanjing University of Science and Technology
基金 国家科技重大专项资助项目(2010ZX04001-032) 甘肃省自然科学基金(1010RJZA043) 兰州理工大学红柳青年教师培养计划(Q201212)
关键词 电主轴 热误差 组合模型 预测 径向基函数 自回归分析 灰色系统 motorized spindles thermal errors combined models forecasting radial basis function autoregressive analysis gray system
  • 相关文献

参考文献15

  • 1Cao Yuzhong. Modeling of high-speed machine-tool spindle systems [ D ]. Vancouver, Canada: Department of Mechanical Engineering, The University of British Columbia ,2006 : 53 -76.
  • 2Bryan J B. International status of thermal error research [J]. Ann CIRP,1990,39(2):645-656.
  • 3Zhao Haitao, Yang Jianguo, Shen Jinhua. Simulation of thermal behavior of a CNC machine tool spindle [ J ]. International Journal of Machine Tool and Manufacture, 2007,47 (6) :1003-1010.
  • 4Tseng P C, Ho J L. A study of high-precision CNC lathe thermal errors and compensation [ J ]. International Journal of Advanced Manufacturing Technology, 2002,19( 11 ) :850-858.
  • 5Zhu J. Robust thermal error modeling and compensation for CNC machine tools [ D ]. Michigan, USA : Department of Mechanical Engineering, The University of Michigan, 2008:35-56.
  • 6Soons J A, Spann H A, Schellekens P H. Thermal error models for software compensation of machine tools [ A ]. Proceedings of 9th Annual Meeting of American Society for Precision Engineering [ C ]. New York, USA :ASME Press, 1994:69-75.
  • 7Wang K C, Tseng P C, Lin K M. Thermal error modeling of a machining center using grey system theory and adaptive network-based fuzzy inference system [ J ]. JSEM International Journal, Series C, 2006,49(4) :1179-1187.
  • 8Kang Y, Chang C W, Huang Y, et al. Modification of a neural network utilizing hybrid filters for the compensation of thermal deformation in machine tools [ J ]. International Journal of Machine Tool and Manufacture, 2007,47 (2) : 376-387.
  • 9Chen J S, Yuan J, Ni J. Thermal error modeling for real-time error compensation [ J ]. International Journal of Advanced Manufacturing Technology, 1996,12 ( 4 ) : 266 -275.
  • 10Lei Chunli, Rui Zhiyuan. Thermal error modeling and compensating of motorized spindle based on improved neural network [ J ]. Advanced Materials Research, 2010,129/131:556-560.

二级参考文献30

  • 1党耀国,刘思峰,刘斌.以x^((1))(n)为初始条件的GM模型[J].中国管理科学,2005,13(1):132-135. 被引量:211
  • 2Ramesh R, Mannan M A, Poo A N. Error compensation in machine tools - A review, PartII.. Thermal errors[J]. International Journal of Machine Tools and Manufacture, 2000, 40: 1257-1284.
  • 3Bryan J B. International status of thermal error research[J]. Ann CIRP, 1990, 39: 645-656.
  • 4Jedrzejewski J, Modrzyci W. A new approach to modeling thermal behavior of a machine tool under service conditions[J]. Ann CIRP, 1992, 37: 401-405.
  • 5Zhang B, Zhuang Y, Cui C. Improving the thermal center in corporation acting active compensation for thermal distortion[J]. Ann CIRP, 1992, 141:455- 458.
  • 6Hatamura Y, Nagao T, Mitsuishi M, etal. Development of an intelligent machining center incorporating active compensation for thermal distortion [J]. Ann CIRP, 1993, 42: 549-552.
  • 7Yang H, Ni J. Dynamic neural network modeling for nonlinear nonstationary machine tool thermally induced error[J]. International Journal of Machine Tools and Manufacture, 2005, 45: 455-465.
  • 8Kang Y, Chang C W, Huang Y, etal. Modification of a neural network utilizing hybrid filters for the compensation of thermal deformation in machine tools[J]. International Journal of Machine Tools and Manufacture, 2007, 47: 376-387.
  • 9Chen J S, Ghiou G. Quick testing and modeling of thermally induced error of CNC machine tools[J]. International Journal of Machine Tools and Manufacture, 1995, 35: 1063-1074.
  • 10Fox R,Taqqu M S. Large sample properties of parameter estimates for strongly dependent stationary Gasuuian time series[J]. Ann Statist,1986,14:517-532.

共引文献24

同被引文献52

  • 1黄湘云,朱学峰.预测控制的研究现状与展望[J].石油化工自动化,2005,41(2):27-31. 被引量:15
  • 2余威明.DS18B20高精度多点温度检测显示系统[J].仪表技术,2007(3):37-39. 被引量:18
  • 3ATRIA M H, FRASER S, et al. On-line Estimation of Time- variant Thermal Load Applied to Machine Tool Structures Using a S-domain Inverse Solution [ J ]. International Jour- nal of Machine Tools and Manufacture, 1999 (39):985 - 1000.
  • 4MIAN N S, FLETCHER S, LONGSTAFF A P, et al. Effi- cient Estimation by FEA of Machine Tool Distortion Due to Environmental Temperature Perturbations [ J ]. Precision Engineering,2013 ( 37 ) : 372 - 379.
  • 5MA Youji. Sensor Placement Optimization of Thermal Error Compensation in Machine Tools[ D ]. Ann Arbor:University of Michigan,2001.
  • 6I MORIWAKI Toshimichi ,SHAMOTO Eiji ,TOKUNAGA Tsuyo- shi. Thermal Deformation of an Uhraprecision Machine ToolduetoEnvironmentTemperaturechange[C].日本机械学会论文集,1997,63(11):4025-4030.
  • 7XIA Junyong, HU Youmin, WU Bo, et al. Research on Ther- mal Dynamics Characteristics and Modeling Approach of Ball Screw[ J ]. The International Journal of Advanced Man- ufacturing Technology ,2009:421 - 430.
  • 8VYROUBAL Jiri. Compensation of Machine Tool ThermalDeformation in Spindle Axis Direction Based on Decompo- sition Method [ J ]. Precision Engineering, 2012,36 : 121 - 127.
  • 9CHOW J H,ZHONG Z W, LIN W, et al. A Study of Ther- mal Deformation in the Carriage of a Permanent Magnet Di- rect Drive Linear Motor Stage [ J ]. Applied Thermal Engi- neering,2012 (48) : 89 - 96.
  • 10N1 J. CNC Machine Accuracy Enhancement Through Rea|- time Error Compensation [ J ]. Journal of Manufacturing Science and Engineering, 1997,119 (4) : 717 - 725.

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部