期刊文献+

区间值三Ⅰ算法的鲁棒性 被引量:1

The Robustness of Inter-Valued Triple Ⅰ Method
下载PDF
导出
摘要 经典模糊推理在不确定性和模糊性比比皆是的实际应用中显得捉襟见肘,而具有更多自由度的2-型模糊集更适合于不确定的和模糊的环境。作为一种特殊的2-型模糊集,区间模糊集因便于计算而倍受青睐。区间值模糊推理在处理信息和图像时能有效减少信息和图像的丢失。本文首先给出基于区间值QL-蕴涵的三I算法的表达式,进一步借助区间值模糊连接词的灵敏度,系统地研究基于几种常见的区间值蕴涵的三Ⅰ算法的鲁棒性,为其在实际中的应用提供理论保障。 The defect of the classical fuzzy reasoning has been exposed to handle inexact information and fuzziness in practice. Type-2 fuzzy set has the potential to outperform in uncertain environments. As a special type-2 fuzzy set,interval-valued fuzzy set is considerably easier to handle. Moreover,Interval-valued fuzzy reasoning can more effectively reduce the loss of information and picture. This paper give firstly the expression of triple I method based on interval-valued QL implication. And then investigated the robustness of triple I method based on some common interval-valued implications by the sensitivity of interval-valued fuzzy logic connectives in detail. This result provided a theoretic guarantee for the application of interval-valued triple I method in practice.
作者 杨超 李得超
出处 《浙江海洋学院学报(自然科学版)》 CAS 2012年第5期440-446,461,共8页 Journal of Zhejiang Ocean University(Natural Science Edition)
基金 浙江省自然科学基金(LY12A01009)
关键词 区间值模糊推理 区间值三Ⅰ算法 区间值模糊连接词 鲁棒性 inter-value fuzzy reasoning inter-value triple I method inter-value fuzze connective robust-ness
  • 相关文献

参考文献5

二级参考文献37

  • 1吴望名.关于模糊逻辑的—场争论[J].模糊系统与数学,1995,9(2):1-10. 被引量:58
  • 2秦克云,裴峥.模糊推理的α-三I算法[J].模糊系统与数学,2005,19(3):1-5. 被引量:8
  • 3张曾科.模糊数学在自动化技术中的应用[M].北京:清华大学出版社,1999..
  • 4吴望名.模糊推理的原则和方法[M].贵阳:贵州科技出版社,1994..
  • 5Cai K Y. Robustness of fuzzy reasoningand δ-equalities of fuzzy sets[J]. IEEE Trans. Fuzzy Syst. ,2001,9:738-750.
  • 6Cai K Y. δ-equalities of fuzzy sets[J]. Fuzzy SetFuzzy Syst, 1995; 76:97-112.
  • 7Cao Z, Kandel A. Applicability of some fuzzy implicationoperators[J]. Fuzzy Set Syst,1989;31:151-186.
  • 8Cordon O,Herrera F,Peregrin A. Searching for basic properties obtaining robust implicationoperators in fuzzy control [J]. Fuzzy Set Syst,2000,111:231-251.
  • 9Dubois D, Lang J, Prade H. Fuzzy setsin approximate reasoning, Parts 1 and 2[J]. Fuzzy Sets Syst. ,1991,40:143-244.
  • 10Li Y M,Li D C,Pedrycz W,Wu J J. An approach to measure the robustness of fuzzy reasoning[J]. Int. J. Intelligent Systems,2005,20(4) :393-413.

共引文献22

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部