期刊文献+

基于场匹配法的双排矩形栅慢波结构高频特性研究 被引量:9

Analysis of high frequency characteristics of the double-grating rectangular waveguide slow-wave-structure based on the field match method
原文传递
导出
摘要 本文运用场匹配法对具有任意位错的双排矩形栅慢波结构的场分布、色散特性及耦合阻抗进行了研究.研究结果表明,场匹配法推导的色散特性与仿真软件CST和HFSS计算的结果完全一致,耦合阻抗介于CST和HFSS之间.在此基础上,详细研究了上下两排系统之间位错对色散特性及耦合阻抗的影响.当位错严格为半个周期时,第一阻带消失,第一个模式最高截止频率与第二个模式最低截止频率重叠,发生简并;当位错为0.45倍周期时,在保证耦合阻抗不变的情况下,基模的通带虽降低了2.8GHz,但阻带却增大了7.9GHz,从而可以有效避免简并及模式竞争的发生. A mode analysis is presented for the double-grating rectangular waveguide slow-wave structure (SWS) with arbitrary longitu- dinal displacements between the two gratings. By matching boundary conditions along the sides of the gratings, the distribution of electromagnetic field and high frequency characteristics of the SWS are studied. The simulation results show that the dispersion curve deduced from field equations is in good agreement with that simulated by software while the interaction impedance is higher than that calculated by HFSS, but lower than by CST. It also demonstrates that the longitudinal displacement between two gratings has a great effect on the first stop-band. The upper cutoff frequency of the first mode almost overlaps the lower cutoff frequency of the second mode when the displacement is set to be strictly half period, that is to say, the first stop-band disappears. To avoid the mode degeneracy and competition, the displacement is reduced to be about 0.45 times of period, so that with the interaction impedance kept unchanged, the stop-band increases about 7.9GHz, while the pass-band declines about 2.8 GHz.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2012年第24期206-213,共8页 Acta Physica Sinica
基金 国家自然科学基金重点项目(批准号:60931001) 国家自然科学基金(批准号:61172016)资助的课题~~
关键词 场匹配法 双排矩形栅慢波结构 色散特性 耦合阻抗 field match method, double-grating rectangular waveguide SWS, dispersion relation, interactionimpedance.
  • 相关文献

参考文献2

二级参考文献13

  • 1Gallerano G P and Biedron S. Overview of terahertz radiation sources. Proceedings of the 2004 FEL Conference, Trieste, Italy, 2004: 216-221.
  • 2Chattopadhyay S. Emerging concepts, technology and opportunities for mezzo-scale terahertz and infrared facilities.Proceedings of EPAC 2004, Lucerne, Switzerland, 2004: 2454-2456.
  • 3Flanders B N. The pure rotational spectrum of solvated HCI: Solute-bath interaction strength and dynamics. The Journal of Physical Chemstry. A 1999, 103(49): 10054- 10064.
  • 4Kempkes M A, Hawkey T J, and Gandreau A P J, et al,. W-band transmitter upgrade for the Haystack ultrawideband satellite imaging radar(HUSIR). Eighth IEEE International Vacuum Electronics Conference, IVEC 2007, Kitakyushu, Japan, May 15-17, 2007: 439-440.
  • 5Ives L, Neilson J, and Negirev A A, et al.. Development of high efficiency backward wave oscillators for submillimeter applications. IEEE International Conference on Plasma Science, Nevada, USA, 2001: O1E7.
  • 6Ives L, Kory C, and Read M, et al.. Development of terahertz backward wave oscillators. 5Th IEEE International Vacuum Electronics Conference, Monterey, Apr 27-29 2004: 67-68.
  • 7Ives L, Caplan M, and Kory C, et al.. Design and test of a submillimeter-wave backward wave oscillators. The Joint 30th International Conference on Infrared and Millimeter Waves and 13th International Conference on Terahertz Electronics, Monterey, CA, USA, 2005(1): 93-94.
  • 8Kory C, Neilson J M, and Ives L, et al.. High efficiency, terahertz, backward wave oscillators. International Conference on Plasma Science, Aantt, Alberta, Canada, May 26-30, 2002: 171.
  • 9Vela G O, Miller M S, and Grow R W, et al.. Terahertz backward wave oscillators with photonic crystal waveguides 2006 IEEE International Vacuum Electronics Conference held jointly with 2006 IEEE International Vacuum Electron Sources, IVEC/IVESC 2006, Monterey, CA, USA, 2006: 425-426.
  • 10Barnett L R, Stankiewics N, and Heinen V Submillimeter-wave backward wave O, et al.. oscillators. International Electron Devices Meeting 1985-Technical Digest., Washington, DC, USA, 1985: 364-365.

共引文献3

同被引文献41

  • 1马天军,孙建海,郝保良,李飞,伊福廷,刘濮鲲.220GHz折叠波导UV-LIGA微加工工艺(英文)[J].强激光与粒子束,2015,27(2):9-13. 被引量:3
  • 2宫玉彬,路志刚,王冠军,魏彦玉,黄民智,王文祥.带状束矩形栅毫米波行波管的研究[J].红外与毫米波学报,2006,25(3):173-178. 被引量:9
  • 3路志刚,魏彦玉,宫玉彬,王文祥.阶梯加载矩形波导栅慢波系统的研究[J].红外与毫米波学报,2006,25(5):349-354. 被引量:8
  • 4吴振华,张开春,刘盛纲.扩展互作用谐振腔的模拟分析[J].强激光与粒子束,2007,19(3):483-486. 被引量:7
  • 5Gilmour A S.Principles of traveling-wave tubes[M].Boston,MA:Artech House,1994:174-193.
  • 6Zhong H,Zhang C,Lin K I,et al.Large plasma-edge broadened magneto-optic-polar-Kerr-effect-based broadband incoherent detection of terahertz spectral frequencies[J].Applied Physics Letters,2005,86(9):091103-1-091103-3.
  • 7Lawrence I R.Microfabrication of high-frequency vacuum electron devices[J].IEEE Transactions on Plasma Science,2004,32(31):1277-1292.
  • 8Gong Y B,Yin H R,Yue L N,et al.A 140-GHz two-beam overmoded folded-waveguide traveling-wave tube[J].IEEE Transactions on Plasma Science,2011,39(3):847-851.
  • 9Colin D J,Jeffrey P C,Garven M,et al.Microfabrication of a 220GHz grating for sheet beam amplifiers[C]∥IEEE International Conference on Plasma Science.Piscataway,NJ:IEEE Press,2010:187-188.
  • 10Shin Y M,Barnett L R.Intense wideband terahertz amplifier using phase shifted periodic electron-plasmon coupling[J].Applied Physics Letters,2008,92(9):091501-1-091501-3.

引证文献9

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部