期刊文献+

基于混沌粒子群优化的新型VRP求解算法 被引量:3

Novel Chaos Based Particle Swarm Optimization Algorithm for the VRP Solution
下载PDF
导出
摘要 标准粒子群优化算法(PSO)容易陷入局部最优,且精度较低、收敛速度慢,难以满足求解VRP的需求。本文提出了一种适用于求解VRP模型的新型混沌粒子群优化算法(CPSO)。该算法引入混沌序列,利用混沌对粒子的初始位置进行初始化,提高了样本的质量,并且对当前粒子附加混沌扰动,促使其跳出局部最优,提高了全局搜索能力,有利于在全局范围内寻找到最优值。实验结果表明,本文算法的收敛速度、精度及稳定性高于PSO算法,是一种有效的VRP求解算法. Since the particle swarm optimization algorithm( PSO) is easily trapping in local optimum,has low precision and slow convergence rate, thus it is difficult to satisfy the requirement of the VRP solution.To solve these problems,a novel algorithm based on chaos particle swarm (CPSO) is proposed in this paper.This algorithm introduces chaos sequence and initializes the initial position of particles by using chaos. Accordingly,the sample quality is improved,and the chaos perturbation of the current particles conduces to avoiding local optimization,as a result of which the global searching ability is improved and it is advantageous for seeking the optimal value within the global scope.The experimental results indicate that the algorithm in this paper has better convergence speed,precision and reliability than PSO and it is an effective algorithm for VRP solutions.
出处 《计算机工程与科学》 CSCD 北大核心 2012年第12期164-168,共5页 Computer Engineering & Science
基金 国防重点预研资助项目(40405020201) 高等学校博士学科点专项科研基金资助课题(200802881017) 南京理工大学自主科研专项计划自主项目(2010ZYTS051) 南京理工大学紫金之星基金资助项目(AB41381)
关键词 粒子群优化 混沌 VRP 扰动 局部最优 particle swarm optimization chaos VRP perturbation local optimum
  • 相关文献

参考文献9

  • 1Archetti C,Feillet D,Gendreau M,et al.Complexity of the VRP and SDVRP[J].Transportation Research Part C:Emer-ging Technologies,2011,19(5):741-750.
  • 2Eksioglu B,Vural A V,Reisman A.The Vehicle Routing Problem:A Taxonomic Review[J].Computers&Industrial Engineering,2009,57(4):1472-1483.
  • 3Zagrafos K G,Androutsopulos K N.A Heuristic Algorithm for Solving Hazardous Materials Distribution Problems[J].European Journal of Operational Research,2004,152(2):507-519.
  • 4Ying Li Bendu Bai Yanning Zhang.Improved particle swarm optimization algorithm for fuzzy multi-class SVM[J].Journal of Systems Engineering and Electronics,2010,21(3):509-513. 被引量:17
  • 5Zhang W,Liu Y T.Adaptive Particle Swarm Optimization for Reactive Power and Voltage Control in Power Systems[C]∥Proc of ICNC’05,2005:449-452.
  • 6杨雪榕,梁加红,陈凌,尹大伟.多邻域改进粒子群算法[J].系统工程与电子技术,2010,32(11):2453-2458. 被引量:16
  • 7Wakano J Y,Hauert C.Pattern Formation and Chaos in Spa-tial Ecological Public Goodsgames[J].Journal of Theoretical Biology,2011,268(1):30-38.
  • 8Zhu Z-l,Zhang W,Wong K-w.A Chaos-Based Symmetric Image Encryption Scheme Using a Bit-Level Permutation[J].Information Sciences2011,181(6):1171-1186.
  • 9van den Bergh F,Engelbrecht A P.A Study of Particle Swarm Optimization Particle Trajectories[J].Information Sciences,2006,176(8):937-971.

二级参考文献40

  • 1谭皓,沈春林,李锦.混合粒子群算法在高维复杂函数寻优中的应用[J].系统工程与电子技术,2005,27(8):1471-1474. 被引量:13
  • 2高鹰,姚振坚,谢胜利.基于种群密度的粒子群优化算法[J].系统工程与电子技术,2006,28(6):922-924. 被引量:7
  • 3V. N. Vapnik. The nature of statistical learning theory. NewYork: Springer-Verlag, 1995.
  • 4B. Scholkopt, S. Mika, C. J. C. Burges, et al. Input space versus feature space in kernel-based methods. IEEE Trans. on Neural Networks, 1999, 10(5): 1000-1017.
  • 5S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, et al. A fast iterative nearest point algorithm for support vector machine classifier design. IEEE Trans. on Neural Network, 2000, 11(1): 124-136.
  • 6L. Wang. Support vector machines: theory and application. Berlin: Springer, 2005.
  • 7T. lnoue, S. Abe. Fuzzy support vector machines for pattern classification. Proc. of International Joint Conference on Neural Networks, 2001: 1449-1454.
  • 8J. Kennedy, R. C. Eberhart. Particle swarm optimization. Proc. of 1EEE International Conference on Neural Networks, 1995: 1942-1948.
  • 9Y. Shi, R. C. Eberhart. A modified particle swarms optimizer. Proc. of lEEE Congress on Evolutionary Computation, 1998: 69-73.
  • 10I. C. Trelea. The particle swarm optimization algorithm: convergence analysis and parameter selection. Information Processing Letters, 2003, 85(6): 317-325.

共引文献31

同被引文献22

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部