期刊文献+

一维二阶椭圆型方程组的超收敛二次有限体积元方法

A Kind of Quadratic Superconvergence Finite Volume Element Method for One Dimensional Second-order Elliptic Equations
下载PDF
导出
摘要 本文针对二阶椭圆型常微分方程组边值问题提出二次超收敛有限体积元方法,证明格式的H1和L2模误差估计,并给出应力佳点处的梯度超收敛估计.最后,编写计算格式的Fortran程序,用数值算例验证了理论分析的正确性和格式的有效性. In this paper, we present a quadratic superconvergence finite volume element method for systems of ordinary differential equations of second-order elliptic boundary value problems and prove H1 and Lz norm error estimates. Further we give the gradient superconve- rgence estimates at optimal stress points. Finally a numerical example is given to show the correctness of theoretical analysis and the efficiency of the scheme by implementing Fortran codes.
出处 《应用数学》 CSCD 北大核心 2013年第1期58-66,共9页 Mathematica Applicata
基金 国家自然科学基金资助项目(11071123)
关键词 一维二阶椭圆型微分方程组边值问题 二次有限体积元方法 误差估计 超收敛 Systems of one dimensional second-order elliptic boundary value problem^Quadratic finite volume element method ~ Error estimate^Superconvergence
  • 相关文献

参考文献9

二级参考文献36

  • 1陈仲英.广义差分法一次元格式的L^2-估计[J].中山大学学报(自然科学版),1994,33(4):22-28. 被引量:9
  • 2田明忠,陈仲英.椭圆型方程的广义差分法(二次元)[J].高等学校计算数学学报,1991,13(2):99-113. 被引量:10
  • 3祝丕琦 李荣华.二阶椭圆偏微分方程的广义差分法(Ⅱ)-四边形网情形[J].6高校计算数学学报,1982,4:360-375.
  • 4Cai Zhiqiang,Steve McCormick. On the accuracy of the finite volume element method for diffusion equations on composite grid[J]. SIAM J. Numer. Anal, , 1990,27(3): 336-655.
  • 5Suli E. Convergence of finite volume schemes for Poissoffs equation on nonuniform meshes[J]. SIAM J. Numer. Anal. , 1991,28(5) : 1419-1430.
  • 6Jones W P, Menziest K R. Analysis of the cell-centred finite volume method for the diffusion equation[J]. Journal of Computational Physics, 2000,165:45-68.
  • 7Shu Shi, Yu H aiyuan, H uang Yunqing,Nie Cunyun. A symmetric finite volume element scheme on quadrilateral grids and superconvergence[J]. International Journal of Numerical Analysis and Modeling, 2006, 3(3) :348-360.
  • 8Li Ronghua,Chen Zhongying, Wu Wei. Generalized Difference Methods for Differential Equations Numerical Analysis of Finite Volume Methods[M]. Monographs and Textbooks in Pure and Applied Mathematics 226, Marcel Dekker Inc. ,2000.
  • 9Cai Zhiqiang, Jim Douglas J r, Moongyu Park. Development and analysis of higher order finite volume methods over rectangles for elliptic equations[J]. Advances in Computational Mathematics, 2003,19:3--33
  • 10Wang Tongke. High accuracy finite volume element method for two-point boundary value problem of second ordinary differential equation[J]. Numberical Mathematics,A Journal of Chinese Universities, 2002. 11(2) :197-212.

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部