摘要
本文对拟抛物方程构造两种分裂对称正定混合元方法.通过适当选取变分形式,格式分裂成两个独立对称正定子格式,并且方法不需要验证LBB条件.收敛性分析表明方法关于变量u和引进的变量σ分别具有L2(Ω)和H(div;Ω)范数意义下的最优收敛阶.最后,通过数值实验验证了方法的有效性.
In this paper, we establish two novel mixed finite element procedures for pseudo-parabol- ic equations. The resulting schemes can be split into two independent symmetric positive definite sub-schemes and does not need to solve a coupled system of equations. Optimal error estimates are proved in the framework of L2 (Ω) theory for u and H(div Ω) theory for the unknown fluxa without requiring the LBB consistency condition. Finally some numerical results are presented.
出处
《应用数学》
CSCD
北大核心
2013年第1期155-164,共10页
Mathematica Applicata
基金
Supported by the National Natural Science Foundation of China(11101431)
Shandong Provincial Natural Science Foundation(ZR2010AL020)
the Fundamental Research Funds for the Central Universities
关键词
分裂
对称正定混合元
收敛性分析
数值实验
Mixed finite element Independent symmetric positive definite Error es-timate