期刊文献+

基于CTM-PMF模型的物品推荐 被引量:1

Product recommendation based on CTM-PMF model
下载PDF
导出
摘要 为了克服传统协同过滤推荐技术的局限,提出了一种基于CTM-PMF模型的物品推荐方法。在PMF模型的基础上,引入CTM模型,将PMF模型良好的推荐品质和CTM模型优越的物品表示方法相结合,有效地实现了新物品推荐;通过引入用户兴趣因子,解决了用户对已购买物品的兴趣变化问题。在自建的物品数据集上,利用提出的方法、PMF模型、G-PLSA模型和UBCF方法进行了对比实验,实验结果表明该方法具有良好的物品推荐品质。 In order to overcome the shortcomings of the traditional collaborative filtering method, a new recommendation method based on CTM-PMF (Correlated Topic Model and Probabilistic Matrix Factorization) model is proposed. CTM-PMF model combines the PMF model in collaborative filtering and the CTM model in topic modes. The result of this combination is that both advantages of PMF model and advantages of CTM model are combined, solves the problem of new items. In this method, a factor is also introduced which reflects the change of user' s interest on the products bought previously. The algorithm is tested on a self-build product dataset. The experimental results show that the new method has better capacity for recommendation compared to PMF, G-PLSA and UBCF method.
作者 彭江平
出处 《计算机工程与应用》 CSCD 2013年第2期1-4,8,共5页 Computer Engineering and Applications
基金 国家自然科学基金(No.71171076) 中央高校基本科研业务费青年扶持项目(No.11HDSK203)
关键词 相关主题模型(CTM) 概率矩阵分解(PMF)模型 用户兴趣因子 物品推荐 Correlated Topic Model(CTM) Probabilistic Matrix Factorization (PMF) model user interest factor product rec-ommendation
  • 相关文献

参考文献15

  • 1Kim H N,Ji A T,Ha T.Collaborative filtering based on colla- borative tagging for enhancing the quality of recommendation[J]. Electronic Commerce Research and Applications, 2010,9: 73-83.
  • 2Hofman T.Collaborative filtering via Gaussian probabilistic latent semantic analysis[C]//Proceedings of International Conference on SIGIR' 03.Toronto, Canada: [s.n.], 2003.
  • 3Koren Y, Bell R, Volinsky C.Matrix factorization techniques for recommender systems[J].IEEE Computer, 2009,42(8) : 30-37.
  • 4Shan H,Banerjee A.Generalized probabilistic matrix factori- zations for collaborative filtering[C]//Proceedings of the 2010 IEEE International Conference on Data Mining.Washington, DC,USA: [s.n.] ,2010: 1025-1030.
  • 5Blei D,Ng A, Jordan M.Latent dirichlet allocation[J].Joumal of Machine Learning Research, 2003,3 : 993-1022.
  • 6Steyvers M, Griffiths T.Probabilistic topic models[M]//Latent semantic analysis : a road to meaning.[S.l.] : Lawrence Erlbaum, 2006.
  • 7Monay F,Gatica-Perez D.Modeling semantic aspects for cross- media image indexing[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(10) : 1802-1817.
  • 8Bei D M, Laferty J D.Correlated topic models[C]//Advances in Neural Information Processing Systems 18.Cambridge,MA:MIT Press,2006.
  • 9Hu Y, Koren Y, Volinsky C.Collaborative filtering for implicit feedback datasets[C]//Proceedings of the 2008 8th IEEE In- ternational Conference on Data Mining.Washington,DC,USA: [s.n.],2008:263-272.
  • 10Pan R, Zhou Y, Cao B, et aLOne-class collaborative filtering[C]// Proceedings of the 2008 8th IEEE International Conference on Data Mining.Washington, DC, USA : [s.n.], 2008 : 502-511.

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部