期刊文献+

双重自适应码本模型在运动目标检测中的应用 被引量:6

Moving Objects Detection with Double Adaptive Codebook Model
下载PDF
导出
摘要 针对经典码本模型在复杂环境下的前景检测存在自适应动态背景能力不足的问题,提出一种双重自适应码本模型算法.该算法分别对前景和背景进行建模和更新,使得前背景可以在预设参数的控制下进行相互转换,消除了背景变化造成的虚影现象;根据命中次数对模型码本中码字的位置进行快速冒泡排序,提高了活动码字首次匹配成功的概率;利用短时滑动窗口的方法对像素变化信息进行存储,实现了像素的均值及偏差的快速实时跟踪,解决了动态背景的模型自适应问题.实验结果表明,文中算法具有较好的检测效果和实时性能,适用于复杂环境条件下的前景目标检测. A dual adaptive codebook model algorithm is proposed is this paper to improve the adaptive capacity of moving object detection in dynamic background. The algorithm models and updates the foreground and background respectively. A parameter controlled converter is employed to achieve mutual conversion between the foreground and background model, which can effectively remove the ghost produced by the partial change of background. A rapid bubble sorting algorithm is proposed to sort the position index of the code words according to their hit times, which can improve the probability of matching the active code word at the first time. A short sliding time window is used to buffer the change of the pixel and trace the average and deviation, which can effectively solve the adaptive problem of model update with dynamic background. Experiment results show that the improved algorithm has adequate detection accuracy and real-time performance and it is suitable for moving object detection in complex environment conditions.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2013年第1期67-73,共7页 Journal of Computer-Aided Design & Computer Graphics
关键词 码本模型 目标检测 虚影消除 自适应 短时滑动窗口 codebook model object detection ghost removal self-adaptive short sliding window
  • 相关文献

参考文献11

  • 1白向峰,李艾华,蔡艳平,李喜来,李仁兵.复杂场景实时目标检测方法[J].计算机辅助设计与图形学学报,2012,24(1):104-111. 被引量:11
  • 2Brox T, Bruhn A, Papenberg N, etal. High accuracy optical flow estimation based on a theory for warping [C]// Proceedings of 8th European Conference on Computer Vision. Berlin: Springer Press, 2004:25-36.
  • 3Lipton A J, Fujiyoshi H, Patil R S. Moving target classification and tracking from real-time video [C] // Proceedings of the 4th IEEE Workshop on Applications of Computer Vision. Los Alamitos: IEEE Computer Society Press, 1998:8-14.
  • 4Friedman N, Russell S. Image segmentation in video sequences: a probabilistic approach [C] //Proceedings of the 13th Annual Conference on Uncertainty in Artificial Intelligence. San Francisco: Morgan Kaufmann Publisher Inc., 1997, 175-181.
  • 5Kim K, Chalidabhongse T H, Harwood D, etal. Background modeling and subtraction by codebook construction [C] //Proceedings of IEEE International Conference on Image Processing. New York: IEEE Press, 2004: 3061-3064.
  • 6Kim K, Chalidabhongse T H, Harwood D, et al. Real-time foreground-background segmentation using codebook model [J]. Real-Time Imaging, 2005, 11(3): 172-185.
  • 7Wu M J, Peng X R. Spatio-temporal context for codebook- based dynamic background subtraction [J]. AEU- International Journal of Electronics and Communications, 2009, 64(8): 739-747.
  • 8Tu Q, Xu Y P, Zhou M L. Box-based codebook model for real time objects detection [C]//Proceedings of 7th World Congress on Intelligent Control and Automation. New York: IEEE Press, 2008:7621-7625.
  • 9Li Y B, Chen F, Xu W L, et al. Gaussian-based codebook model for video background subtraction [C]//Proceedings of 2nd Conference on Natural Computation-PartⅡ. Heidelberg.. Springer Press, 2006:762-765.
  • 10甘新胜.基于码书的运动目标检测方法[J].中国图象图形学报,2008,13(2):365-371. 被引量:15

二级参考文献22

  • 1刘扬,黄庆明,高文,叶齐祥.自适应高斯混合模型球场检测算法及其在体育视频分析中的应用[J].计算机研究与发展,2006,43(7):1207-1215. 被引量:18
  • 2代科学,李国辉,涂丹,袁见.监控视频运动目标检测减背景技术的研究现状和展望[J].中国图象图形学报,2006,11(7):919-927. 被引量:169
  • 3Cutler R,Davis L.View-based detection[C]//Proc of Int Conf on Pattern Recognition.Piscataway,NJ:IEEE,1998:495-500.
  • 4Wren C,Azabayejani A,Darrel L,et al.Pfinder:Real-time tracking of the human body[J].IEEE Trans on Pattern Analysis and Machine Intelligence,1997,19(7):780-785.
  • 5Horprasert T,Harwood D,Davis L.A statistical approach for real-time robust background subtraction and shadow detection[C]//Proc of ICCV'99 Frame-Rate Workshop.Piscataway,NJ:IEEE,1999.
  • 6Stauffer C,Grimson W.Adaptive background mixture models for real-time tracking[C]//Proc of IEEE Conf Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE,1999.
  • 7Elgammal,Harwood D,Davis L.Non-parametric model for background subtraction[G]//LNCS 1834.Berlin:Springer,2000:751-767.
  • 8Kim K,Chalidabhongse T H,Harwood D,et al.Background modeling and subtraction by codebook construction[C]//Proc of the IEEE Int Conf on Image Processing.Piscataway,NJ:IEEE,2004:3061-3064.
  • 9Kim K,Chalidabhongse T H,Harwood D,et al.Real-time foreground-background segmentation using codebook model[J].Real-Time Imaging,2005,11(3):167-256.
  • 10Doshi A,Trivedi M."Hybrid cone-cylinder" codebook model for foreground detection with shadow and highlight suppression[C]//Proc of the IEEE Int Conf on Advanced Video and Signal Based Surveillance (AVSS'06).Piscataway,NJ:IEEE,2006.

共引文献38

同被引文献77

  • 1陈亮,陈晓竹,范振涛.基于Vibe的鬼影抑制算法[J].中国计量学院学报,2013,24(4):425-429. 被引量:21
  • 2魏志强,纪筱鹏,冯业伟.基于自适应背景图像更新的运动目标检测方法[J].电子学报,2005,33(12):2261-2264. 被引量:54
  • 3Wei Zhiqiang,Ji Xiaopeng,Wang Peng.Real-time moving object detection for video monitoring systems[J].Journal of Systems Engineering and Electronics,2006,17(4):731-736. 被引量:18
  • 4代科学,李国辉.一种基于码本的监控视频运动目标检测算法[J].计算机工程,2007,33(14):27-29. 被引量:8
  • 5Joshi K A. Thakore D G. A survey on moving object de-tection and tracking in video surveillance system [J]. In-ternational Journal of Soft Computing and Engineering,2012,2(3):44-48.
  • 6VOSTERS L.CAI F S.GRITTI T. Real-time robust back-ground subtraction under rapidly changing illuminationconditions [J]. Image and Vision Computing. 2012,30(12):1004-1015.
  • 7Brutzer S. Hoferlin B. Heidemann G. Evaluation of back-ground subtraction techniques for video surveillance[A].Proc.of the 2011 IEEE Conference on Computer Visionand Pattern Recognition[C]. 2011,1937-1944.
  • 8O'Callaghan R.Haga T. Robust change-detection by nor-malized gradient-correlation[A]. Proc.of 2007 IEEE Con-ference on Computer Vision and Pattern Recognition[C].2007,1-8.
  • 9Choi J,Chang H J, Yoo Y J,et al. Robust moving objectdetection against fast illumination change [J]. ComputerVision and Image Understanding,2012,1 16(2) :179-193.
  • 10Xu M,Ellis T. Illumination-invariant motion detection usingcolour mixture models[A]. Proc. of the 2001 British ma-chine vision conference[C]. 2001,163-172.

引证文献6

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部